The Memorist Tale:
Every Thunk Every Cost All At Once

Xing Li', Yao Li?, Peter Schachte!, and Christine Rizkallah'

! University of Melbourne
2 Portland State University

Abstract. Lazy evaluation offers great flexibility by computing only
what is necessary. However, analysing the cost of lazy programs is notori-
ously challenging, as computation occurs out of order and depends on fu-
ture demands. Recent work has proposed alternative semantics for mod-
elling lazy evaluation cost that avoid reasoning about program states.
However, existing approaches either rely on nondeterminism or require
complex bidirectional semantics. We present the Memorist Semantics,
a novel semantics for analysing the cost of lazy programs by explicitly
tracking the cost and dependencies of every subterm. Our semantics an-
notates components of a term with fine-grained cost and usage informa-
tion, yielding a deterministic semantics that can be expressed through a
simple monadic interface. We formalize the semantics in Rocq and verify
its soundness with respect to the existing Clairvoyance Semantics. Sim-
ilar to prior formalized semantics, our semantics is defined for a total,
typed language with built-in structural recursion and without support
for first-class functions. We outline ideas for possible extensions.

Keywords: computation cost - lazy evaluation - operational semantics

1 Introduction

It is challenging to analyse computation cost of functional programs. Functional
programs typically abstract away how programs evaluate. However, the compu-
tation cost of a program depends partly on the evaluation strategy adopted. The
call-by-need strategy, used by lazy languages such as Haskell, enables expressive
and flexible programming by avoiding unnecessary computation [20]. Unlike call-
by-value which is used by eager languages such as Standard ML, call-by-need
ensures that components of a term are evaluated only when necessary. This al-
lows for elegant program composition and potential efficiency improvements, but
at a cost: analysing the cost of lazy programs is notoriously difficult.

To explain the difference, we consider the following example. Let truePrefix
be a function that takes a list of Booleans as input and returns the prefix of
the list that only contains true. The function truePrefixAppend takes two lists of
Booleans, concatenates them using append, and applies truePrefix on the result-
ing list. Figure 1 presents an implementation in Rocq Prover (formerly Coq) [27].
Now consider the program: truePrefixAppend [true;false] [truel.

2 Xing Li, Yao Li, Peter Schachte, and Christine Rizkallah

Fixpoint append {A} (xs ys : list A) Fixpoint truePrefix (xs : list bool)

: list A := : list bool :=
match xs with match xs with
| [1=>ys | [1=>11]
| x::xs' => | x::xs' =>
let zs := append xs' ys let zs := truePrefix xs' in
in x::zs if x then x::zs else []
end. end.

Definition truePrefixAppend (xs ys : list bool) : list bool :=
let zs := append xs ys in truePrefix zs.

Fig. 1: Rocq definitions of the functions placed in A-normal form.

truePrefixAppend (t :: f:: []1) (t:: [])
= V'let zs :=append (t :: f:: [1) (t:: [1) in truePrefix zs
= let zs :=v'(let z; :=append (f :: [1) (t:: [1)int :: z1) in truePrefix zs
= let z1 :=append (f :: [1) (t:: [1) in truePrefix (t :: z1)
= let 21 :=...inVv'let w; :=truePrefix z; int & t:: wy

= let z; :=...inlet wy :=truePrefix z; int :: wy ()

= let 21 :=v'(let z2 :=append [] (t:: [1)inf: 22)in
let wy :=truePrefix z; int :: wy
= let z2 :=append [] (t:: [1) inlet wy :=truePrefix (f :: z2) int :: wy

= let 2z :=...inlet wy := v/ (let wa := truePrefix zo inf & f 1 w2) int :: wy
=let z2:=...inlet wy :=(let we :=...in[])int w1
= let 20 :=...int :: []

Fig. 2: Lazily evaluating the program truePrefixAppend. We place a tick (v') im-
mediately after unfolding a step of function application to indicate the incurring
of a cost. The notation ¢ & xs denotes if e then zs else []. We use t and f as
shorthands for true and false.

We are interested in the time cost of evaluating this program, which we
model by the number of function applications. While Rocq does not prescribe a
specific evaluation strategy, we can view this code as a shallow embedding of a
program in another language. For instance, tools such as hs-to-coq [38, 3] can
automatically translate Haskell programs into this form.

Under eager evaluation, truePrefixAppend first fully computes append of the
two input lists, evoking 3 calls to append. The result is then passed to truePrefix.
Every element is processed, thus evoking 4 calls to truePrefix. Overall, the pro-
gram evaluates to [true] and incurs a total cost of 3 +4 4+ 1 = 8, with one
additional call to the top-level truePrefixAppend.

The Memorist Tale: Every Thunk Every Cost All At Once 3

In comparison, lazy evaluation is demand-driven: computation is performed
based on the demand on the output. Figure 2 illustrates how the evaluation pro-
ceeds stepwise. If the result is demanded to its weak-head normal form (WHNF),
we only need it to compute to true::_ without computing its tail, and can stop
at the step marked (x). Only one step of truePrefix and append each is needed.
Together with one call to truePrefixAppend, the total computation cost is 3.

With sharing in lazy evaluation, if more, e.g., the full list, is demanded from a
later computation, we can resume from what was already computed, i.e., true:: _.
Now we need to compute the tail and fully reduce the result to true::[]. This
requires one more step of truePrefix and of append each, making the cost 5 in
total. Note that this cost is still smaller than that incurred by eager evaluation,
as we never perform computations not necessary for producing the final result,
such as computing the recursive call append [] [true].

Challenges. The example shows several challenges in analysing lazy evaluation
cost. Firstly, the cost of lazy evaluation is not local. Unlike eager evaluation,
cost incurred by a function may not happen at its call site but later inside an-
other function’s application. The cost also depends on future demand. For these
reasons, it is challenging to analyse individual functions in isolation. Secondly,
evaluation steps of different functions are interleaved. The evaluation steps of
truePrefix and append in Fig. 2 are an example. Furthermore, the evaluation
is stateful. To model sharing, an evaluation needs to remember what has been
previously computed.

Ezisting approaches. One can treat lazy programs as stateful programs, reason-
ing about states using some program logics. One example [35] utilizes the Iris®
framework [29] and the Iris separation logic [39]. Another approach [8,15] em-
ploys equational reasoning, tracking computation cost by, e.g., using a graded
monad. Instead of directly dealing with the stateful natural semantics of lazi-
ness [24], we can use an alternative semantics equivalent in terms of computation
cost. Since it only matters whether, but not when, a computation happens for
time cost analysis, one can localize lazy cost if the future demand is known.
In this vein, the Clairvoyance Semantics [14], encodable in a simple monadic
interface [26], simulates future demands via nondeterminism. However, nonde-
terminism makes formal reasoning and testing challenging. In Li et al. [26], an
additional logic similar to incorrectness logic [33] is proposed for this reason. To
avoid nondeterminism, the Demand Semantics [42] employs bidirectional evalu-
ations: a forward one that computes output values from inputs as normal, and a
backward one that calculates the minimal input demand and computation cost
from pure input and an output demand. However, this requires a function to
be translated into two different versions, which duplicates code, is error-prone
and poses new challenges to formal reasoning. We defer a detailed discussion
contrasting these approaches to Section 7.

Our key idea. In this paper, we propose the Memorist Semantics, a novel cost
semantics for lazy evaluation that tracks both usage and cost of evaluation of

4 Xing Li, Yao Li, Peter Schachte, and Christine Rizkallah

terms. The key idea is to run an eager evaluation, while giving every piece of
data a unique name and ‘memorizing’ information used for computing the data.
The Memorist Semantics enables analysing computation cost locally without
considering states, similar to the Clairvoyance and Demand Semantics. Mean-
while, the Memorist Semantics improves on the former by being deterministic,
and improves on the latter by only employing one semantics and requiring no
code duplication, thus combining the best of two worlds.

To achieve this, we address two key challenges. The first is precise cost at-
tribution for different components of a term or value. Since lazy evaluation may
only require part of a term, we must exclude unnecessary computations from cost
calculations. For this, we track the cost of computing each component separately
and annotate it with its cost. The second challenge is accounting for shared com-
putations. Because lazy evaluation evaluates each component of a term at most
once, our semantics must prevent duplicating cost accounting. We achieve this
by tracking usage sets and using set union for bookkeeping.

Contributions. We make the following contributions:

— We introduce the Memorist Semantics, a deterministic cost semantics for
call-by-need that tracks both cost and usage of subexpressions (Section 3).
— We prove that our semantics correctly models the execution cost of a program
under call-by-need by relating it to the Clairvoyance Semantics (Section 4).
— We show that our semantics can be encoded using a simple monadic interface
via a proof of concept implementation in Rocq (Section 5).
— We formalize our results in Rocq to ensure rigorous proofs.
We describe the intuition behind our semantics in Section 2. We discuss limita-
tions and potential ways to address them in Section 6, including lack of handling
of general recursion and formalizing first-class functions. We discuss related work
in Section 7 and conclude the paper with future work in Section 8.

2 The Memorist Approach

Imagine a person with a remarkably retentive memory, whom we call a Mem-
orist. When evaluating a program, the Memorist does all computations eagerly
while memorizing for each computation what other computations (“thunks”) it
requires and its own computation cost. After evaluating the entire program, the
Memorist learns all the thunks used by computing each part of the value and
their individual computation cost. If some program demands parts of the value,
the Memorist can tell all the thunks that are used in the evaluation up to these
parts. A corresponding lazy evaluation would also have to evaluate exactly these
thunks. One can thus infer the lazy evaluation cost based on this information.

Thunks and annotations. To realize this approach, we wrap every piece of data
inside a thunk, and track its usage and cost during evaluations. Thunks here
are intended to simulate thunks in lazy evaluation, but they are not encoded as
suspended computations. Each Memorist thunk has a unique name to distinguish

The Memorist Tale: Every Thunk Every Cost All At Once 5

it from others. We annotate a thunk with a pair of cost and a set of thunk names.
The former tracks the cost incurred by evaluating the thunk to its WHNF,
without the cost incurred by evaluating other thunks. The latter, called a usage
set, records all thunks whose results are used in that evaluation. We also annotate
an output value in the same fashion.

Consider the program truePrefixAppend [true;false] [true] from a Memo-
rist’s perspective. Since lazy evaluations do not necessarily evaluate every func-
tion or constructor argument, we accordingly wrap the input lists and all argu-
ments to the list constructor :: in thunks. For illustration, we denote a thunked
expression x with a thunk name ¢ and an annotation a by z;a,. We can then
represent the first input list, after being thunked, as

{truei,aa,, = {falseiaa;, = [Jiy@a;, Fis@as, lir@as,

and the second as {[truei(;@ai6 it [is@a,,]}is@ais’ for some unique names i, ..., ig
and annotations a;,, ..., a;,. We delay the formal definitions to Section 3.

The Memorist Semantics in action. We evaluate the program eagerly while
tracking thunk usage and cost, with detailed steps in Fig. 3. We first compute
append (Fig. 3a). At each step, we “unthunk” the first argument to access the list
inside; e.g., at the first step, we unthunk thunk i wrapping the first argument,
and say we used i7. We then recursively apply append to the tail of the first input
list until we reach the empty list, at which point we unthunk both thunks ¢; and
ig, and return the second input list.

We wrap this result from computing append [1;, {true;, :: [1;, [, (bound to
29) in a new thunk freshly named j;. The computation incurs one call to append;
hence, the cost annotation is 1. It uses the thunks i; and ig. Note that the thunks
in the usage sets annotated to i; and ig must all be used if 4; and ig are used.
So we include all of them in j;’s usage set annotation. Denoting union of {i;}
and i1’s usage set by s(i1), j1’s usage set annotation is then s(i;) U s(ig). The
rest of the computation proceeds similarly. The final output is also annotated.

Lazy computation cost. With the information in the annotations, we can analyse
the cost of append with respect to any demand on the output. We do so by
collecting all thunks used by a demand and aggregating their individual cost. For
example, if we demand the output list to its WHNF, we need only to consider
the thunk usage in the output annotation, which is s(i7). Moreover, we are
interested in the cost of append itself, not in previous computations of its input.
We account for this by removing all the thunks existing prior to the evaluation of
append [true;false] [true] from s(i7). This gives us the empty set, suggesting no
thunked cost to consider. Therefore, we only need to count the cost annotation
to the final output. The inferred lazy cost is thus 1, as expected.

If we demand the output to the first two elements instead, we must addition-
ally take into account the thunk js wrapping the first cons cell, and the thunks
14 and i3 wrapping the first and the second element in the output list. That is,
we consider all thunks in the set s(i7) U s(j2) U s(i4) U s(i3). Only ja is created

6 Xing Li, Yao Li, Peter Schachte, and Christine Rizkallah

append ﬂti4@ai4 22 {[fig@aig i []il@aill}iz@aizl}i7@ai7 {[’Cz‘ﬁ@ai6 i []is@aiS]}ig@aig

= V'let z :=append {{fi, = [1s; iy {tic =2 [Tiglhis intay 21 ~ i7
= let z; :=v'(let z2 :=append [1;, {tig :: [1szltig infoy i 22) inty, =21 ~ g
= let 21 :=(let z2 :=v'ty; =t [15; infyy 22) inty, 121 ~ 41,18

= let z1 :=fiy = {tig =2 [DigBji@(1,s(1)us(is)) 1N tig 2 21
= tiy i {fig =t = []iS]}jI]}jZ@(LS("@)) Q(1, s(ir))

(a) Evaluation steps of append

truePrefix {ti, == {fis = {tig ©: [is i1 Binltsa

= v'let wy :=truePrefix {{fiy :: {tig :: [dis i [y ity B to, = wi ~ 3
= let wy := v/ (let wy :=truePrefix {tig == [1i;ty; infoy & Fay we)in .. ~ j2
= let wy := (let w2 :=v'(let w3 := truePrefix [J;; in tiy & tig :: ws) in...)in...
= let wy := (let wp :=(let ws :=[Jints; & tig :twz)in...)in... ~ i
= let wy :=(let w2 :=(tig & tig 2 [k, @(1,5(i5))) 1N Fig T Fig twa) in. ..
= let wy := (let wa :=t4 = [1gy infiy T Fiy 2 w2) inty, B tiy o wi ~ g
= let wi :=fiy & fiy it {{tig =0 iy frzay, intiy & tiy wn

where ax, = (1,s(j1) Us(is)) = (1,{j1} Us(i1) U s(is) Us(is))
=letwy :=[Tinty & ty = wr ~ 13
= tiy & tiy = Dkga(n,s(a)usiis)
= ti, © [Jig Q(1, s(ja) U s(ia)) ~ j3, 104

(b) Evaluation steps of truePrefix

truePrefixAppend {ti, == {fiy it [14; Fanlber {tig 2 [Jigltis
= v'let zs :=append {ti, :: {fiz :: [1i;Fialbir {tig it [1igltig in truePrefix zs
truePrefix {ti, = {fiy = {tic = iz} lialisestiny
= tiy o [Jag Q(1 41, s(j3) Us(ia)) = (2,5(43) U s(ia))

(c) Evaluation steps of truePrefixAppend

Fig. 3: The Memorist evaluation for the program truePrefixAppend. Annotations
are shown once and omitted subsequently. The final output values have their an-
notations shown next to themselves. We use the same notations and shorthands
from Fig. 2. We also denote by w, the thunking of wy, by s(i) the union of {i}
and the usage set annotated to ¢, and by ~ 4, j,... that thunks named i, j, ...
are used in the last step proceeding to the expression on the current line.

The Memorist Tale: Every Thunk Every Cost All At Once 7

during the computation of append. Thus, we ignore all the other thunks, and
add only the cost annotation to jo to the output cost annotation. This gives us
14+ 1 = 2 as the inferred lazy cost. Note that, while we have reasoned about
different demand, we need not re-evaluate the entire expression, but only extract
and aggregate information based on the demand from the same evaluated result.

Composing lazy cost analysis. A key feature of the Memorist Semantics is that
we can analyse cost locally and compose cost analyses. Consider the evalua-
tion of truePrefix and truePrefixAppend. Figure 3b illustrates the evaluation of
truePrefix applied to the result of append (wrapped in a thunk named j3). Its
annotation comes from the output annotation of previous computations. The
evaluation of truePrefix proceeds similarly as that of append, except it must also
examine the list elements, and therefore, use the thunks wrapping the elements.
For instance, computing true;; 9 true;, :: [1x, must access the value inside the
thunk i¢ to determine which if-branch to take. Hence, the thunk k; wrapping
this result must include s(ig) (among others) in its annotation. The similar thing
happens with k3 and the final output. Notice that, if a computation is never nec-
essary, its cost and thunk usage will not be included anywhere in the final result.
Indeed, the thunks k; (wrapping the empty list) and ko (wrapping the third el-
ement of the input list) are “thrown away” after encountering false and never
needed to compute the final result in a lazy evaluation regardless of demand.

Now counsider the top-level program truePrefixAppend in Fig. 3c. The Mem-
orist evaluation of it essentially computes append on the two input lists, thunks
the resulting list, and then computes truePrefix. We can collect thunks based
on demand as before. If the output list is demanded only to its WHNF, we take
only the thunks in the output annotation, which is s(j3) U s(i4). But all except
js already exist in the input environment. The cost is thus the sum of the cost
annotations given to the final output and to j3, which is 2+ 1 = 3. If the entire
output list is demanded, we take also s(i4) and s(ks) into account, where the
thunk 74 thunks the first and only element and k3 wraps the empty tail. With
ks, j2 and j3 being the thunks not existing in the input and each having a cost
annotation of 1, we infer the total lazy cost tobe 2+ 14+1+1=5.

3 The Memorist Semantics

We consider the following typed total language £ with Booleans, lists, explicit
thunks, ticks, and structural recursion on lists. 3

Types A, B ::=bool |listA|TA
Variables z,y € Var
Expressions M, N ::=z | letx = M in N | true | false | if My My Mj | tick M
| nil | cons M N | foldr (Azy. M) My M3 | lazy M | force M

3 We have also handled pairs in our Rocq formalization; see the accompanying artefact
for details. We omit them here for brevity.

8 Xing Li, Yao Li, Peter Schachte, and Christine Rizkallah

Well-typed terms are given by judgements of the form v = M : A. For the typing
rules, we refer the readers to [42] where the same language is considered. Thunks
are represented with the T type and manipulated explicitly, allowing us to study
laziness directly. The lazy construct thunks a computation, and force forces the
evaluation of a thunk. The tick construct simulates a computation that incurs a
unit cost. The construct foldr is included as a primitive to facilitate structural
recursions on lists. We can view the language as an intermediate representation
into which an ordinary functional language can be translated.

Memorist Semantics. We define the Memorist Semantics for the language L
formally below. Terms are evaluated into values defined by

v ::= true | false | nil | cons vy vy | th; v

A value th; v of type T A, where A is the type of v, represents a thunk and is
assigned a unique name i € N. Following the idea in Section 2, the semantics as-
sociates the output value and each thunk with a pair (¢, s) of a cost ¢ and a usage
set s of names of thunks. Components of an annotation can be extracted via the
usual first and second projections on pairs, denoted 1 (-) and ma(-) respectively.

An evaluation occurs in an evaluation environment defined as I" := 0 | I', 2 —
v that maps variables to values. We also define an annotation context, A ::=
0| A, i~ a; that maps a thunk name 7 to its annotation «;, to track annota-
tions. Keeping track of two separate contexts allows more flexibility in manipu-
lating thunks and analysing their usage and cost.

Formally, the Memorist semantics for well-typed terms in £ is defined by
the evaluation judgement I'; A F M || A’; (v,). It states that the well-typed
term M evaluates, under the environment I" and the annotation context A,
to the value v annotated by « with the extended annotation context A’. The
judgement is defined by the operational semantic rules in Fig. 4. Evaluation is
eager by default, which is easier to reason about than its lazy counterpart. We
claim (and prove in Section 4) that the recorded thunk usage captures exactly
the thunks needed to be evaluated in a corresponding lazy evaluation, from which
we can derive the lazy evaluation cost.

The EMBASIC rule introduces the base cases. The EMVAR rule looks up
the variable in the environment for the value it binds to. The rules EMCONS
and EMLET proceed by evaluating the subterms sequentially. The annotations
to values of the two sub-evaluations are combined by adding the costs and tak-
ing the union of the usage sets. With set union, the semantics can account for
potential sharing of thunks. The rules EMIFTRUE and EMIFFALSE evaluates
the if-condition and proceeds to evaluate the then- or else-branches accordingly.
The rule EMTICK increments the cost count by one.

In EMLAZY, the term M is evaluated to a value v before being wrapped
inside a th constructor. The computation cost and thunk usage associated with
this evaluation is annotated to the thunked value v. Accordingly, the cost and
usage associated with the final result th; v is empty, as a thunked computation
incurs no cost and uses no additional thunks per se.

The Memorist Tale: Every Thunk Every Cost All At Once 9

EMVaAr EMLET
I'z)=wv i AEM | Avs (v, an) I (=)AL B N Ag; (v2, az)
Atz A; (v,0) I'sAbletz = Min N | As; (v2, a1 @ a)
EMBasic EMCons
t € {true, false, nil} A M Ags (vi,an) T3 AL E N | Az (v2,)
At A, 0) I'; At cons M N || Asz; (cons vy vz, a1 @ az)
EMIFTRUE EMIFFALSE
I'; A My Ay (true, a) I'; A My | Ay (false, aq)
T A Ms b Az (v, a2) I; A - Ms b As; (v, a2)
F;AFifMl Ms> M3 @A2;<’U,O¢1 EBOt2> F;AF if My My M3 »UA%(U,OQ @0(2>
EMFoRCE
EMLAzZY Iy AFM A (th; v, @)
TAFM A (v,a) i g dom(A) s=a® {i} ®m (A1)
I Ablazy M L A, (i = a); (th; v, ®) I'; Abforce M || A'; (v, s)
EMFoLDRNIL EMTick
I A Ms) Ag; (nil, o) T3 A B Mo b As; (v, a2) TAFM A (v,)
I'; A+ foldr (Azy.My) Ma Ms | Asg; (v, 01 D a2) Iy Al tick M L A" (v,a @ 1)
EMFoLDRCONS

I'; AF Ms || Ag; (consw (th; vs), a1)
I'; Ay F foldr (Azy.M1) Mavs | Ag; (v2, a2) j & dom(Asz)
o' #y 2y & dom(I) UFV (M) UFV(Me) UFV(M3) s = as @ {i} ® m2(A2(4))
I (2 =), (Y = thyve); Az, (5 = s) F Mi[z', 4 [, y] I As; (vs, o)
I'; A ¢ foldr (Azy.Mi) Mo Ms || As; (vs, a1 @ ag)

Fig.4: The Memorist Semantics. The notation FV(M) denotes the set of all
free variables appearing in M. The empty annotation (0, () is denoted ®. The
operation @ on annotations is defined as ay @ ag := (w1 (1) + 71 (2), ma(ar)U
ma(ag)). We use the shorthand o @& n where n is a number to mean (7 (a) +
n, m2(a)) and a @ s where s is a set to mean (m(«), ma(a) U s).

Thunked cost and usage are taken into effect only when the thunk is needed,
forcing the computation to actually take place. Such forcing is explicitly done via
the force construct, evaluated according to the EMFORCE rule. While thunks
in the usage set annotated to the thunked value (i.e., mo(.A’(7)) in the rule) are
directly merged into the usage set annotated to the final value, the thunked cost
is not added in yet. This avoids duplicating the cost when the same thunk is
needed more than once. The total evaluation cost is to be derived afterwards.

The term foldr (Azy. M;) My Ms is evaluated based on whether the list Ms
computes to is empty. If empty, M is evaluated per the rule EMFOLDRNIL.
Otherwise, the evaluation follows EMFOLDRCONS which recursively evaluates
foldr on the tail of the list and then applies Azxy. M; to its head and the thunked

10 Xing Li, Yao Li, Peter Schachte, and Christine Rizkallah

result of the recursive call.

Basic properties of annotation contexts. We are only interested in annotation
contexts that are wvalid in the following sense. In the following theorem, we
denote by dom(-) and im(-) the domain and the image of a function, respec-
tively. By “thunks inside v”, we mean thunks wrapping the arguments to the
outermost and nested constructors of v: e.g., all thunks appearing in the list
cons (th; true) (th; (thy nil)).

Definition 1 (Valid annotation context). An annotation context A is valid
if for every annotation o € im(A), ma(a) C dom(A). We say such an A is valid
for a value v if for any name i of a thunk inside v, we also have i € dom(A).
Moreover, A is valid for an environment I' if Vo € dom(I"), A is valid for I'(x).

A Memorist evaluation may extend the annotation context but never modifies
the existing annotations. It also preserves the validity of annotation contexts.

Lemma 1 (Evaluation only extends annotation context). IfI'; A- M ||

A’ (v, a) then Vi € dom(A), A'(i) = A(7).

Lemma 2 (Evaluation preserves annotation context validity). IfI'; A+
M| A {v,a) and A is valid for I, then A’ is valid for I' and v, and ma(a) C
dom(A").

Lazy cost and usage analysis. To derive the complete usage set and cost with
respect to a demand, we must consider every thunk inferred to be needed. We
have illustrated the basic idea in Section 2, which we express formally here.
Consider an evaluation I'; A = M || A’; (v, (¢, s)). All thunks recorded in the
usage set s annotated to v are needed to lazily evaluate M to v in WHNF. The
total lazy cost is then the sum of all annotated costs given to every thunk in s,
plus ¢. To perform such calculations, we define the following operation

sumcost s (A, s) := Z 71 (A(%))

i€sNdom(A)

for an annotation context A and a usage set s. The total lazy cost of the above
evaluation can be then expressed as ¢+ sumcostys (A’ \ A, s). The set difference
A"\ A (where A and A’ are treated as functions, i.e, sets of mappings) excludes
thunks already evaluated prior to this evaluation. By so doing, we avoid including
the cost incurred by previous computations.

Suppose the above evaluation yields cons (th; true) (th; nil), annotated with
(¢, {k,m}), and subsequent computations demand also the head of the list. We
now need to collect also the thunk ¢ and its usage set, i.e., {k, m}U{i}Uma(A'(7)).
Call this set s’. The cost is then c¢+sumcost s (A’ \ A, s’). By collecting names in
a set first, we ensure that no thunk can contribute to the cost more than once.

The Memorist Tale: Every Thunk Every Cost All At Once 11

4 Correctness of the Memorist Semantics

We prove the Memorist Semantics is correct by relating it to the Clairvoyance Se-
mantics [14, 26], which is equivalent to the standard call-by-need semantics [24].
The Clairvoyance Semantics nondeterministically chooses to evaluate or skip
an expression when first encountered instead of delaying the evaluation until
needed.

Reasoning directly about the relationship between the Memorist and the
Clairvoyance Semantics is challenging. Instead, we define, as a stepping stone, a
variant of the Clairvoyance Semantics where thunks are named and annotated
with cost. We prove that this variant is equivalent to the original Clairvoyance
Semantics and corresponds to the Memorist Semantics, therefore establishing a
correspondence between the original Clairvoyance Semantics and the Memorist
Semantics. The proofs presented here have been formalized in Rocq; see the
accompanying artefact.

4.1 The Clairvoyance Semantics

Here we present a Clairvoyance Semantics for the language £, adapted directly
from the formalization by [42] which is itself based on a monadic variant of the
Clairvoyance Semantics due to [26]. Types are interpreted as

[A] : Set
[bool] := {true, false}
[list A] := {nil} U {cons 01 02 | 01 € [T A], 02 € [T (list A)]}
[TA]:={L}u{thd|v e [A]}

The thunk type T is interpreted as a set whose elements are either of the form
th ¥ representing a thunk evaluated to a value v, or L representing skipped
computation. The interpretation extends to the type context.

The semantics of evaluating a well-typed term v = M : A is denoted by
[M] : [v] = P([A] x N) that takes an interpreted environment I' € [] and
produces a set of pairs of values ¢ € [A] and the cost ¢ € N incurred by the
evaluation. The detailed definition of the semantics can be found in [26,42].
When evaluating lazy M and foldr which involves creating thunks, the semantics
nondeterministically chooses to evaluate a subterm to a value and wrap it in a th
constructor, or to skip the evaluation and produce L. Forcing a thunk is simply
accessing the evaluated value in the thunk. The evaluation of force N fails if the
computation of N is skipped. The evaluation cost tracked and output by the
semantics varies with the nondeterministic choices made during the evaluation.
For a given term and environment, if the output is nonempty, the minimal cost
for the same value corresponds to the call-by-need cost.

12 Xing Li, Yao Li, Peter Schachte, and Christine Rizkallah

EAVAR EALET _

I(z)=1 [;C M A Crs (01, e1) (D@0 ©1);C1 F N U7 Co; (Do, ¢2)
f;C}—xUAC;(ﬂ,()) f;CFletx:MianLACQ;@g,cl—&—cQ)

EALAzY EALAzYSKIP

;e M A C5(0,¢) i dom(C)

I;C ¢ lazy M 2 €', (i — c); (th; §,0) I;C Flazy M | C; (L, 0)

EAFORCE EAFOLDRNIL ~
;¢ M A ¢ (th 9, ¢) [;CF Mz U Ci; (nil,er) T3CF Mo 7 Co; (8, ¢2)
I';C + force M | C'; (6, ¢) I;C + foldr (Azy. My) Mz Mz ™ Co; (5, ¢1 + ca)
EAFoLDRCONSSKIP

f;C = Ms l}A C1; (cons 0 Us, c1)
o £y 2’y ¢ dom(I) UFV (M) UFV(Ms) UFV (M)
I (@ = 01),(y = L);C = Mifa! g fo,y) 7 Cs; (B2, c3)
I';C + foldr (Azy. My) My Ms |\ Cs; (D2, ¢1 + ¢3)

EAFoLprRCONS
I;CH Ms U2 Cy; (cons ¥ (th; vs), c1) I';Cy + foldr (Azy. M1) M2 vs I Co; (D2, c2)
j&dom(C)U{i} 2’ #vy ',y &dom(I") UFV (M) UFV(Ma)UFV(Ms)
I, (x' —), () — th; 92);Ca, (j — c2) F Ma[z', 3y [z, y] U4 Cs; (03, c3)
I';C + foldr (Awy. My) My Ms I Cs; (0s, c1 + c3)

Fig.5: Selected rules of the Annotated Clairvoyance Semantics. FV (M) denotes
the set of free variables in M.

4.2 A Cost Annotated Variant of the Clairvoyance Semantics

We define a cost-annotated variant of the Clairvoyance Semantics, similar to the
Memorist Semantics, except that there are no usage sets. We define values as

¥ == true | false | nil | cons; 02 | th; 0| L

Values of the thunk type T now take two forms: an evaluated thunk, th; v, with
a unique name ¢ € N, or a skipped computation L.

Evaluations occur in an environment I” ::= () | I,z — © and a cost annota-
tion context C ::= 0 | C,i — ¢; that maps thunk names to their annotations. The
semantics is defined by evaluation judgements of the form I;CHMyAC (D,).
It states that a well-typed term M is evaluated in an environment I" and a cost
annotation context C to the value ¥ with a cost annotation ¢ and a cost an-
notation context C’. Most semantic rules are similar to those of the Memorist
Semantics sans the tracking of thunk usage with sets. We show some of the
rules in Fig. 5. The main difference resides in the evaluation of lazy and foldr,
where thunks are created. Under Clairvoyance Semantics, the evaluation non-
deterministically evaluates the term (EALAzY and EAFOLDRCONS) or skips

The Memorist Tale: Every Thunk Every Cost All At Once 13

it (EALAzYSKIP and EAFOLDRCONSSKIP). Forcing a term by force M only
succeeds if M evaluates to an evaluated thunk, and fails otherwise.

Basic properties. An Annotated Clairvoyance evaluation may extend the cost
annotation context but never modifies the existing annotations.

Lemma 3 (Evaluation only extends cost annotation context). If I';C
M A C'; (D, c¢), then Vi € dom(C),C’ (i) = C(3).

We analogously define validity of cost annotation contexts and show it is pre-
served by evaluation. We consider only such valid contexts in subsequent proofs.

Definition 2 (Valid cost annotation context). A cost annotation context
C is valid for a value v, if any name i assigned to a thunk nested inside v is in
dom(C). C is valid for an environment I' if Va € dom(I"), C is valid for I'(x).

Lemma 4 (Evaluation preserves cost annotation context validity). If
I;CF M A C (0, ¢) and C is valid for I, then C' is valid for I' and for ©.

Clairvoyance evaluation cost. The total evaluation cost can be recovered by
adding up the cost annotations given to the thunks created during this evalua-
tion, plus the cost annotation given to the output value. We define the following
operation to sum over cost annotations from a cost annotation context C:

sumcost 4 (C) := Z C(i)

i€dom(C)

For an evaluation I';C = M |} C'; (#, ¢), the cost incurred by the evaluation can
be computed by ¢+ sumcost 4(C' \ C).

Correspondence between the two Clairvoyance Semantics. We define a corre-
spondence between values and between environments of the two semantics.

Definition 3 (Corresponding Clairvoyance values and environments).
Let ¥ and v be values of the Annotated and of the monadic Clairvoyance Seman-
tics respectively. They are corresponding values modulo names, denoted v~ v, if
the rules below apply. The relation extends to environments naturally.

t € {true, false, nil, 1 } U1 ~D; Vg~ Dy V~D

t~t cons U1 Uy ~ cons U1 U2 th; 0 ~tho

If v ~ 0, then © can be regarded as abstracting away the name from v. Fur-
thermore, a value ¢ in the monadic Clairvoyance Semantics corresponds to an
infinite set of values ¥ in the Annotated Semantics that are all structurally the
same but with different names to thunks, if the values have thunks nested inside.

The theorems below establish the soundness and completeness together with
cost equality. We consider the evaluation of a well-typed term v : M F A.

14 Xing Li, Yao Li, Peter Schachte, and Christine Rizkallah

Theorem 1 (Soundness of the Annotated Clairvoyance Semantics wrt
the monadic Clairvoyance Semantics). Let I';C = M |} C'; (¢, ¢), with the
cost annotation context C valid for I'. Then for all I' € [V] with I~ 1T, there
exists (0,¢') € [M](I"), such that © ~ 0 and ¢ + sumcost 4(C' \ C) = ¢

Theorem 2 (Completeness of the Annotated Clairvoyance Semantics
wrt the monadic Clairvoyance Semantics). Let I' € [y] with I'~I" and let
C be a cost annotation context valid for I'. Then for all (0,¢) € [M](I"), there is
an evaluation I';C + M A C'; (0, ¢) with & ~ 0 and ¢ + sumcost 4(C' \ C) = c.

4.3 The Memorist and the Annotated Clairvoyance Semantics

Clairvoyance evaluation can make nondeterministic choices that are more eager
than necessary. Thus in principle, to show that the Memorist Semantics cor-
responds to the lazy semantics, we need to choose the right nondeterministic
branch of Clairvoyance evaluation for a given demand, which is difficult to do
directly. Instead, we take an approach inspired by [42]. We prove that the cost
inferred from the Memorist Semantics is no larger than any nondeterministic
branch of a corresponding Clairvoyance evaluation, and that there is always a
Clairvoyance branch producing the same cost.

However, there is still a problem. The Memorist Semantics provides a sum-
mary of all individual pieces of information at the end of evaluation. When a
thunk is created, it is not known whether it would be eventually used in the
Memorist evaluation, yet it is already evaluated or skipped in a corresponding
Clairvoyance evaluation. Therefore, we cannot simply compare the evaluation
cost step by step. To address this, we prove first that the thunk usage tracked
by the Memorist Semantics correctly captures the lazy behaviour. We show that
the inferred thunk usage is minimal in that it never gives more thunks than ac-
tually evaluated in a corresponding Clairvoyance evaluation, and it is sufficient
in that there is some corresponding Clairvoyance evaluation evaluating exactly
those thunks as inferred. From these we can derive the cost correctness.

Corresponding thunks in Memorist and Annotated Clairvoyance Semantics
may have different names. Thus, we define renaming functions of type Ny — Nis
mapping Annotated Clairvoyance thunk names ANy C N to Memorist thunk
names Ny, C N. Since the Memorist evaluation is always eager, it never evaluates
less than the corresponding Clairvoyance evaluation. Hence, thunk renaming
functions are always total. We define a notion of validity for renaming functions
to ensure that the names in the domains and images are indeed names assigned
in the respective evaluation. We also require renaming functions to be injective
so that two names, if related under such a function, are uniquely related.

Definition 4 (Validity of renaming functions). A renaming function f :
N4 — Ny is valid with respect to some valid annotation context A and valid cost
annotation context C if f is injective, dom(f) = dom(C) and im(f) C dom(A).

The Memorist Tale: Every Thunk Every Cost All At Once 15

4.4 Functional and Cost Correctness of Memorist Semantics

We define a relation ¥ ~¢ v on an annotated Clairvoyance value v and a Memorist
value v, parametrized by a renaming function f : Mg — Nyy.

Definition 5 (Value-name and environment-name correspondence).
Given a renaming function f as above, the value-name correspondence ¥ ~y v
1s defined inductively by the rules below. The environment-name correspondence

I' ~¢ I' for an Annotated Clairvoyance environment I' and a Memorist envi-
ronment I" holds if dom(I") = dom(I") and Yz € dom(I"), I'(z) ~; I'(z).

t € {true, false, nil } Oy ~p 1 Do~y U2 vV~pu fli)= i€ Nur

t~yt cons ¥y Uy ~§ CONS V1 V2 th; 0 ~¢ th; v L ~pthyo

The relation ~ describes the partial correspondence on values/environments
and names between the two semantics. Given two environments related by ~
where f is valid, a Memorist evaluation and an Annotated Clairvoyance evalu-
ation of the same term produce ~ ¢-related values, and the extended renaming
function remains valid. Validity of the renaming functions ensure that each eval-
uated thunk in the Clairvoyance evaluation corresponds to a unique thunk from
the Memorist evaluation. We also define a thunkwise cost correspondence:

Definition 6 (Thunkwise cost correspodence). Let f be a valid thunk
renaming function with respect to an annotation context A and a cost annotation
context C. A is thunkwise cost corresponded with C under f, denoted A~¢C, if
Vi € dom(C), C(i) = m(A(f(0)))-

The theorem below states that, for each thunk evaluated in a Clairvoyance
evaluation, there is a corresponding thunk in the Memorist evaluation with equal
cost annotation. Intuitively, the cost annotation to a thunk is not associated with
evaluating other thunks, and thus must be the same across the two semantics.

Theorem 3 (Functional and cost annotation correctness). Let I'; A+
My A (v, (e, 8)) and I;CHMUyAC: (0,¢), and f be a valid renaming function
wrt A and C. If I ~f I and A~¢C, then 0 ~p v, c = ¢ and C'~p A’, for some
I extending f and valid wrt A’ and C'.

Deriving usage from demand. Lazy evaluation is driven by demand which cannot
always be determined locally. In Memorist Semantics, we consider such demand
via usage sets. As discussed previously, if more than the outermost portion of a
value is demanded, we collect all the demanded thunks in the value, along with
thunks in the usage sets annotated to them and to the final output.

Since we do not generally know the exact names given to thunks from the
outset, we need a way to abstract away from names when representing demand.
For the current proof, the partially evaluated values in the monadic Clairvoyance
Semantics in Section 4.1 provides a convenient way. We refer to them as thunk-
nameless partial values below, and relate them with Memorist values as follows.

16 Xing Li, Yao Li, Peter Schachte, and Christine Rizkallah

Definition 7 (Partial evaluatedness). A thunk-nameless partial value O is a
partially evaluated version of a Memorist value v of the same type, denoted v < v,
if the rules below apply. The relation extends naturally to environments.

t € {true, false, nil} D1 K v Uy <X Vo <

<
t<t cons U1 U2 < cons vy Vs tho < th;v 1 <th;v

We use © with © < v to represent a demand on a Memorist value v. The following
relation characterizes the set of names of all thunks needed given such a demand.

Definition 8 (Usage representation sets). Given values v and 0 with © < v
and a valid annotation context A. Repr 4(v, 0, s) if the rules below apply.

t € {true, false, nil} Repr 4(v1,01,51) Repr 4(v2, Oz, $2)

Repr 4(t,t,0) Repr 4 (cons vy vg, cons ¥y ¥g, $1 U s2)

Repr 4(v, v, s)
Repr 4 (th; v, L, 0) Repr 4 (th; v, th o, {i} U s Uma(A(4)))

The relation extends to environments: given a Memorist environment I’ and
a thunk-nameless partial environment I' with I' < T, ReprA(F,f’,s’) if 8 =
Uzedom(r {7 € so | Repr 4(I'(z), (), 50)}. Let (c,s1) be the annotation given
to v. We call the set s U sy the usage representation set for the demand ¥ on v.

Lemma 5. Let v and v be a Memorist value and a thunk-nameless partial value
0 respectively, of the same type. Let A be a valid annotation context for v. We
have © < v if and only if there is a set s of thunk names with Repr 4(v, 0, s).
The same holds for environments in both directions.

Usage minimality. We now prove that the usage representation set inferred from
the Memorist Semantics is minimal. Specifically, we show that every name in
such a usage representation set always corresponds to the name of an evaluated
thunk in a corresponding successful Clairvoyance evaluation after renaming.

We can immediately make one observation. If the above minimality holds,
then for every Memorist thunk j corresponding to an evaluated Clairvoyance
thunk under a thunk renaming function f, its usage set annotation must be in-
cluded in the image of f, im(f), that captures all Memorist thunks corresponding
to some evaluated Clairvoyance thunks. This is desired; otherwise we would have
discovered a Memorist thunk inferred to be needed whereas a successful Clair-
voyance evaluation did not evaluate the thunk, failing the minimality.

Definition 9 (Thunkwise usage minimal). An annotation context A is
thunkwise usage minimal with respect to a cost annotation context C under a
valid thunk renaming function f, denoted A €y C, if Vi € dom(C), we have

m2(A(f(2))) € im(f).

The validity of f ensures that ¢ € dom(f) and f(i) € dom(A). The following
lemma states that any two corresponding evaluations of some well-typed term
M preserve the thunkwise usage minimality.

The Memorist Tale: Every Thunk Every Cost All At Once 17

Lemma 6 (Thunkwise usage minimality). Let I'; A M || A5 (v, (c,s))
and I';C = M WA C5 (D, ¢). If I ~; T, A%C and A €y C for some valid thunk
renaming function f, then A" €y C' and s Cim(f’) for a valid f" extending f.

From here we can establish the desired usage minimality, generalizing to the
usage representation set with respect to an arbitrary demand on the output
value. The notation f[-] denotes the image of a set under some function f.

Theorem 4 (Usage minimality). Let I'; AF M || A'; (v, (¢, s)) and I';C +
M A (0,¢), with T ~¢ I, A%yC and A €y C for some valid f. Given any
thunk-nameless O with ¥ ~ 0 and Repr 4 (v,0,s") for some s', we have sU s’ C
f'[dom(C")] and (s Us') \ dom(A) C f'[dom(C’ \ C)] for a valid f’ extending f.

The conclusion stated with set difference allows us to exclude thunks that
already exist prior to this evaluation. In short, the theorem states that thunks
captured by (sUs’)\ dom(A), i.e., all thunks created during the evaluation and
inferred to be needed by the Memorist Semantics, always correspond (under
thunk renaming f’) to a subset of all thunks evaluated on any successful branch
in the corresponding Clairvoyance evaluation as captured by dom(C’ \ C). That
is, a corresponding Clairvoyance evaluation can never evaluate fewer thunks.

Usage sufficiency. Usage minimality essentially states that the inferred usage
is “not too big”. Next, we prove it is “not too small” either: for any Memorist
evaluation and some demand, there is a corresponding Annotated Clairvoyance
evaluation evaluating exactly what is inferred to be needed by the former.

In general, we cannot assert there is always a successful Clairvoyance eval-
uation of a well-typed term given an arbitrary environment I': e.g., evaluating
force z in an environment I" with I'(z) = L can never succeed. To address this,
we utilize the usage representation set to characterize a minimal environment.
We have shown that every thunk in this set must be evaluated in all correspond-
ing successful Clairvoyance evaluation. It remains a question whether it might
be “too minimal” and miss some thunks that should have been evaluated, though
it does not matter for now since we only rely on it to set a lower bound on how
less evaluated the Clairvoyance environment can be.

Given the union of a usage representation set and the output usage annota-
tion set, if we take the intersection of this union and the domain of the initial
annotation context A, the resulting set s should contain all existing thunks
inferred to be needed by the evaluation. From s we can construct a partial en-
vironment I’ satisfying Repr 4 (I, I ,8) to use as the “minimal” environment. We
then consider any Clairvoyance environment no less evaluated than I.

Definition 10 (No less evaluated values and environments). An Anno-
tated Clairvoyance ¥ is no less evaluated than a thunk-nameless partial value 0
of the same type, denoted 0 < U, if the rules below apply.

t € {true, false, nil } 0 S0 0y S g D
)

Z/\ N

v
t<t cons ¥y U < cons Uy Ug th th; v 1L <th;o

18 Xing Li, Yao Li, Peter Schachte, and Christine Rizkallah

The relation extends to environments naturally: let I and I" be an Annotated
Clairvoyance environment and a thunk-nameless environment respectively, de-
fined on the same typing context. I' S I' if Vo € dom (), I'(z) < I'(z).

Below we consider a well-typed term v - M : A.

Theorem 5 (Usage sufficiency). Let I'; A- M || A (v, (¢, s)) with A valid
for I'. Let © € [A] with Repr 4 (v,0,5') for some s'. There is some I' € []
with Repr 4(I', ", (s U s') N dom(A)), such that for all Annotated Clairvoyance
environment I" with ' < T, a valid cost annotation context C for I' and a valid
thunk renaming function f with T’ ~¢ I',if f, A and C satisfy the assumptions
in Theorem 4, then there is some [;C + M |4 C'; (0,¢"y with © < 0 and (s U
§')\ dom(A) = f'[dom(C" \ C)], for a valid f' extending f.

The theorem states that, given a Memorist evaluation with some demand,
we can always construct a corresponding Clairvoyance evaluation, such that
all the thunks in the Memorist evaluation inferred to be needed (as captured by
(sUs’)\dom(.A)) coincide with all the thunks evaluated during the corresponding
Clairvoyance evaluation (as captured by dom(C’\ C)), after thunk renaming.
In other words, there is always a corresponding Clairvoyance evaluation that
evaluates exactly as per the inferred usage from the Memorist evaluation.

Together, Theorems 4 and 5 imply that the inferred thunk usage from the
Memorist Semantics is minimal but nontrivial. It represents exactly what is
evaluated on the laziest branch in a corresponding Clairvoyance evaluation.

4.5 Lazy cost correspondence

In the Memorist Semantics, lazy evaluation cost is derived based on the inferred
thunk usage and the annotated cost. We have shown that the cost annotations
are correct (Theorem 3), and so is the inferred thunk usage (Theorems 4 and 5).
Consequently, the derived cost coincides with the evaluation cost of the laziest
possible Clairvoyance evaluation. Below consider a well-typed term v+ M : A.

Theorem 6 (Cost minimality). Let I; A+ M | A’; (v, (c,s)) and I';C +
M A ¢ (o, ¢, with T ~y I'y ASsC and A €5 C for some valid thunk renaming
function f. Given any thunk-nameless value v with ©~0 and Repr 4 (v,0,8") for
some s', we have ¢ + sumcost s (A" \ A, sU ") < ¢ + sumcost4(C'\ C).

Theorem 7 (Cost existence). Let I'; A+ M | A5 (v, (c,s)) with A a valid
annotation context for I'. Let v € [A] with Repr 4 (v, 0, s") for some s'. There is
some I' € [y] with Repr 4(I, I, (s Us') Ndom(A)), such that for all Annotated
Clairvoyance environment I with I < I, a valid cost annotation context C for
I" and a valid thunk renaming function f with I ~¢ I, if f, A and C satisfy
the assumptions in Theorem 4, then there is some I';C = M A C'; (0,¢) with
0 <0, and ¢ + sumcosty (A \ A, sU ") = ¢’ + sumcost4(C' \ C).

The two theorems state that the derived lazy cost from the Memorist eval-
uation is no larger than the cost incurred by any corresponding Clairvoyance
evaluation and equal to the cost by some corresponding Clairvoyance evalua-
tion. Thus, the Memorist Semantics derives the correct lazy evaluation cost.

The Memorist Tale: Every Thunk Every Cost All At Once 19

5 Implementation

We provide a proof of concept implementation of the Memorist Semantics in
Rocq. Our implementation uses shallow embedding and encapsulates all the
operations over thunks and annotations using a simple monadic interface. We
model named thunks using the Th type below, and represent an annotation as a
pair of a natural number (nat) and a finite set of natural numbers (NatSet).

Record Th (A : Type) : Type := MkTh {name: nat; val: A}.
Definition Annot : Type := nat * NatSet.

We implement the Memorist evaluation using a monad M, encapsulating the
manipulations of thunks and the accumulation of cost:

Record Result (A : Type) : Type := MkRes {val: A; annot: Annot; cont: AC}.
Definition M (A : Type) : Type := AC -> Result A.

It represents the evaluation of an expression in an annotation context (AC), en-
coded using an association list, to a result (Result). The result is a record con-
taining the value (val), the output annotation (annot), and the final annotation
context (cont). The monad M is essentially a generalized state monad, also known
as an update monad [1]. All operations over thunks and annotations can be en-
capsulated using a few combinators of the monad M, shown in Fig. 6. Apart from
the standard ret and bind, we also define lazy to wrap the value in M with a
thunk, forcing and force to unwrap thunks, and tick to increment cost. The set
of combinators is the same as that of the Clairvoyance Monad [26].

To analyse a program, we can use the operational semantics in Fig. 4 as a
recipe to translate a pure program to a monadic program that reifies the cost.
Let’s consider the example in Section 2. We need to encode lists first:

Inductive ListT (A : Type) : Type :=
NilT : ListT A | ConsT : Th A -> Th (ListT A) -> ListT A.

We show the translations in Fig. 7. The structure of the translated program
follows the original one closely. Whenever the value inside a thunk is accessed, the
thunk needs to be unwrapped first via forcing ($!). We separate the translation of
append into a top-level appendM and an auxiliary appendM_ (similar for truePrefix)
so they can pass Rocq’s termination checker directly. We put a tick at the start
of each call to increment cost by one, though not in the top-level appendM and
truePrefixM as they are simply unwrapping the thunks around the arguments.
We are interested in the lazy cost with respect to the length of a list de-
manded; accordingly, we define the following functions to collect needed thunks.

Fixpoint usagelL_ (ac : AC) {A} (xs : ListT A) (n : nat) : NatSet :=
match xs, n with
| ConsT (MkTh i x) (MkTh j xs'), S n' =>

mapSu ac i U mapSu ac j U usagelL_ ac xs' n

| _, _ => emptyset
end.

Definition usageL {A} (r : Result (ListT A)) (n : nat) : NatSet :=
usagelL_ (cont r) (val r) n.

20 Xing Li, Yao Li, Peter Schachte, and Christine Rizkallah

Definition ret {A} (x : A) : M A := fun ac => MkRes x (0,emptyset) ac.
Definition bind {A B} (m : MA) (f : A->MB) : MB := fun ac =>
let 'MkRes x al acl :=m ac in let 'MkRes y a2 ac2 := (f x) acl in
MkRes y (fst al + fst a2, snd al U snd a2) ac2.
Notation "x >> y" := (bind x (fun _ =>y)).

Definition lazy {A} (m : M A) : M (Th A) := fun ac =>

let 'MkRes x a acl := m ac in

MkRes (MkTh (nextIdx acl1) x) (@,emptyset) (ext acl a).
Notation "'lazyLetM' x :=y 'in' z" := (bind (lazy y) (fun x => z)).
Definition collect (i : nat) : M unit := fun ac =>

MkRes tt (@, mapSu ac i) ac.

Definition forcing {A B} (th : Th A) (f : A->MB) : MB :=
match th with MkTh i v => collect i >> f v end.

Notation "f $! x" := (forcing x f).

Definition force {A} (th : Th A) : M A := forcing th ret.

Definition tick : M unit := fun ac => MkRes tt (1,emptyset) ac.

Fig. 6: Definitions of the monadic combinators for M, omitting level and associa-
tivity declarations for notations. The expression nextIdx ac returns a name not
in the domain of the annotation context ac, and ext ac a extends ac by mapping
the next new name to an annotation a. The expression mapSu ac i maps a thunk
name i to a set containing i and the names in i’s usage set annotation under ac.

Fixpoint appendM_ {A} Fixpoint truePrefixM_ (xs: ListT bool)
(xs : ListT A) (ys : Th (ListT A)) : M (ListT bool) := tick >>
: M (ListT A) := tick >> match xs with
match xs with | NilT => ret NilT
| NilT => force ys | ConsT y ys =>
| ConsT x xs' => lazylLetM zs:= truePrefixM_ $! ys
lazyLetM zs := forcing xs' in forcing y (fun y_ =>
(fun xs_ => appendM_ xs_ ys) if y_ then ret (ConsT y zs)
in ret (ConsT x zs) else ret NilT)
end. end.
Definition appendM {A} Definition truePrefixM
(xs ys : Th (ListT A)) (xs : Th (ListT bool))
: M (ListT A) := : M (ListT bool) :=
(fun xs_ => appendM_ xs_ ys) $! xs truePrefixM_ $! xs.

Definition truePrefixAppendM (xs ys: Th (ListT bool)) : M (ListT bool) :=
tick >> lazylLetM zs := appendM xs ys in truePrefixM zs.

Fig. 7: Translation of the functions append, truePrefix and truePrefixAppend.

The Memorist Tale: Every Thunk Every Cost All At Once 21

Here n is the number of thunked cons cells demanded in the output list. The
notation mapSu ac i maps the thunk name i to a set containing i and names of
thunks in its usage set annotation. In general, different usage collection functions
need to be defined for other datatypes and demands.

The following function captures the lazy cost derivation described in Sec-
tion 3, where s is the usage representation set collected using e.g., usageL. The
expression dom ac gives the domain of the annotation context ac as a NatSet, and
sumcost sums over the cost annotated to the thunks in the given set.

Definition infcost {A} (r : Result A) (s : NatSet) (ac : AC) : nat :=
sumcost (cont r) (diff (snd (annot r) U s) (dom ac)) + fst (annot r)

Now consider the example program, truePrefixAppend [true;false] [truel.
We can obtain the concrete cost by running the translated program and applying
infcost to the result. The input may be from some previous computation or from
lifting some pure lists. Suppose we have

MkTh 4 (ConsT (MkTh 3 true) (MkTh 2 (ConsT (MkTh 1 false) (MkTh @ NilT))))
MkTh 7 (ConsT (MkTh 6 true) (MkTh 5 NilT))

Below we refer to them as t11 and t12, and the annotation context at this stage
as ac. To infer cost, we apply infcost on the result and the usage representation
set for some demand. As before, we consider two demands on the same output:
one only to WHNTF, i.e., 0 cons cells, and the other demanding one more.

Compute let r := truePrefixAppendM tl1 tl2 ac in
let cost@ := infcost r (usageL r @) ac in
let costl := infcost r (usageL r 1) ac in (cost@, cost1).

The above computes to (3,5), i.e., the lazy cost is 3 with respect to the first
demand and 5 with respect to the second. Tracking localized cost and usage
information along computations enables the derivation of cost via program exe-
cution. This stands in contrast to Clairvoyance Monad where we cannot execute
programs for cost but only to verify user-provided cost specifications. It also
allows the Memorist Semantics to evaluate a program only once for analysing
different demands in principle, as suggested by this presentation. In comparison,
the Demand Semantics [42] must redo evaluation for each demand. We contem-
plate that such features may make the Memorist Semantics a suitable basis for
developing a framework for testing, enabling more potential applications.

We can also prove specifications of lazy cost for these functions. For now,
we focus on mechanically verifying user-provided specifications in Rocq. The
first theorem below states that the lazy cost of appendM is linear in the length
demanded from the output list and at most the size of the first input list, where
size is measured using sizeT that counts the number of constructors in a list. The
second states that the lazy cost of truePrefixM is linear in the length demanded
from the output. The ACOk and NameOk premises ensures the existing thunk names
and annotations are valid in the sense of Definition 1.

Theorem appendM_cost :
forall ac {A} (txs tys : Th (ListT A)) n (r := appendM txs tys ac),

22 Xing Li, Yao Li, Peter Schachte, and Christine Rizkallah

ACOk ac -> NameOk txs ac -> NameOk tys ac -> n < sizeT (val r) ->
infcost r (usageL r n) ac = min (n + 1) (sizeT (Th.val txs)).

Theorem truePrefixM_cost : forall ac txs n (r := truePrefixM txs ac),
ACOk ac -> NameOk txs ac -> n < sizeT (val r) ->
infcost r (usageL r n) ac = n + 1.

Directly using these theorems, we can prove the following that expresses the lazy
cost of truePrefixAppendM in terms of that of appendM and truePrefixAppendM.

Theorem truePrefixAppendM_cost :
forall ac txs tys n d (r := truePrefixAppendM txs tys ac),
ACOk ac -> NameOk txs ac -> NameOk tys ac -> n < sizeT (val r) ->
infcost r (usageL r n) ac = min (n+1) (sizeT (Th.val txs)) + (n+1) + 1.

Our experience with proving them suggests that more proof engineering im-
provements can be made in reasoning about usage sets. Nonetheless, our seman-
tics offers the benefit of a simpler and more straightforward process, without the
need of verifying two kinds of specifications using additional logic as in Clair-
voyance Monad or dual translations for each function as in Demand Semantics.

6 Limitations

We choose to define and mechanize the Memorist Semantics based on the same
source language as the Demand Semantics [42], because we are interested in
defining a translation from a lazy functional language to Rocq in shallow em-
beddings. For this reason, we also inherit the same limitations of not covering
first-class functions and general recursions.

First-class functions. The current mechanization does not account for first-class
functions. This has the benefit of simplicity, since we need not handle closures,
but excludes useful constructs like higher-order functions.

To show that the Memorist Semantics works for first-class functions, we ad-
ditionally developed a pen-and-paper formalization of a heap-based Memorist
Semantics on an untyped A-calculus similar to the approach of Launchbury [24]
and Hackett and Hutton [14]. We demonstrate that the Memorist Semantics
does support first-class functions in this version. We provide the pen-and-paper
formalization and a proof of correctness in the supplementary material.

We leave the mechanization of first-class functions to future work. Due to
differences in the languages and the styles of the semantics, we anticipate chal-
lenges such as relating variables encoded as de Bruijn indices between the Mem-
orist and Clairvoyance evaluations. The heap-based alternative version would
require more explicit handling of index shifting. Moreover, Clairvoyance evalu-
ations may skip let-bindings, potentially resulting in the same variable in the
Clairvoyance and Memorist evaluations having different indices. Thus, we need
to maintain another relations on indices intertwined with the shifting during
proofs. In comparison, it is simpler to maintain thunk-renaming functions in

The Memorist Tale: Every Thunk Every Cost All At Once 23

the current mechanization, since Clairvoyance evaluations may only skip thunks
in lazy or foldr but not let-bindings, and the thunk names are separate from
variables and unchanged during evaluations.

General recursion. Focusing on total programs with structural recursion allows
us to keep the semantics simple and shallow-embeddable in Rocq, whose speci-
fication language is total, but limits the semantics due to no support of general
recursion. In practice, one potential way to simulate general recursion is to limit
the number of steps with fuel. When analysing cost, we consider only programs
that halt eventually when evaluated lazily, for which there must be fuel that is
sufficient. Thus, it may be possible to extend the semantics to handle recursive
lets by introducing fuel, allowing us to analyse for infinite data structures and
general recursive programs if they compute within some fuel.

7 Related Work

The standard call-by-need semantics. Launchbury’s Natural Semantics [24], the
standard call-by-need operational semantics, captures demand-drivenness and
sharing by storing expressions unevaluated in mutual heaps, evaluating them
when needed, and modifying the heaps to memoize the results. However, due to
its statefulness, the semantics is difficult to reason about.

Clairvoyance Semantics. The Clairvoyance Semantics [14] instead interprets call-
by-need as call-by-value with nondeterministic choices of proceeding or skipping
a computation. To adapt it for formally verifying lazy evaluation cost, the Clair-
voyance Monad [26] uses a monad to model the nondeterminism and encapsulate
cost accumulation, with an option over a thunk datatype representing nondeter-
ministic choices. It has a simple interface and avoids the exponential explosion in
cost analysis of the underlying semantics. However, it is non-executable, as the
embedded programs lead to Rocq propositions as proof obligations. Moreover, an
additional logic similar to Incorrectness Logic [33] has to be introduced to reason
about nondeterminism. One must provide and prove two kinds of specifications:
one for all nondeterministic evaluation branches that succeed in computation,
and another for the existence of a more specific branch. In proofs, one often
needs to select the correct nondeterministic branch manually. In comparison,
the Memorist Semantics is deterministic and executable, and tracks all relevant
information alongside the computation, although usage sets can be potentially
challenging for formal reasoning in Rocq.

Demand Semantics. The Demand Semantics [42], adapted from [2] to a total and
typed setting, is another approach to reason about demand and cost for lazily
evaluated programs. It considers two kinds of demand: the externally given de-
mand on the output, and the input demand describing how evaluated the input
needs to be per the output demand. The semantics infers the minimum input
demand from the output demand, by having a forward evaluation for obtaining

24 Xing Li, Yao Li, Peter Schachte, and Christine Rizkallah

fully evaluated output and a backward evaluation to infer the input demand
from the output and the demand on it. Like our work, this semantics is deter-
ministic, avoiding the complication of dealing with nondeterminism. However, it
essentially has two separate semantics and requires translating a source program
into two different versions, which results in code duplication and can be more
error-prone. Moreover, the backward inference must always take a specific output
demand as input. For the same output from a forward function with a different
output demand, the semantics must redo the evaluation. In contrast, the Mem-
orist Semantics tracks all necessary information during evaluation, which does
not vary with output demand. Hence, analysis for the same function requires no
re-evaluation even when different output demands are specified.

Formally verifying lazy evaluation cost. The monadic framework by [15] analyses
computation cost of pure Haskell programs in Liquid Haskell [40], a proof as-
sistant based on extending Haskell with refinement types. Nonstrictness is built
into the relevant datatypes in the framework, while users must handle sharing
explicitly by inserting a pay construct into code. This approach follows an ear-
lier Agda library by [8] for verifying time cost bounds for lazy functional data
structures using amortized analysis techniques from [34], and uses a monadic
dependent thunk type with information about cost embedded at the type level.

Some recent efforts also focus on formally reasoning about the amortized cost
of lazy functional data structures. The Iris® framework [29] is used in [35] to
verify the banker’s queue, the physicist’s queue, and the implicit queue in Rocq,
via directly reasoning about mutable cells using the Iris separation logic [39].
The Demand Semantics is applied to formally reason about the amortized cost
and persistence of the banker’s queue and the implicit queue [42]. Proving the
amortized cost of simple stacks, binomial heaps, and a variant of finger trees [6]
has been done in Liquid Haskell, though in a non-lazy setting without sharing [4].

Analysing resource bounds for call-by-need programs. A strictness analysis based
method by [37] mechanically analyses time cost bounds for call-by-need programs
and generalizes to higher-order functions by introducing additional structures
containing information about function applications and associated cost. A type-
based analysis by [22| automatically infers linear cost bounds for call-by-need
programs using Automatic Amortized Resource Analysis (AARA) introduced
by [19] and employing the notion of prepaying to avoid duplicating shared cost,
and extends to univariate polynomial bounds [30] based on the method by [18§].

Resource analysis for strict languages. AARA initially deals with linearly-bounded
heap space cost of first-order strict functional programs [19], and has been ex-
tended (e.g., [18,21,17]), implemented in Resource Aware ML [16], and devel-
oped into a framework for certified automatic inference of resource bounds for
low-level programs [5]. Another line of work analyses time complexity by ex-
tracting from programs the recurrence relations for cost [11,10,23,7,9].

Some recent efforts focus on unifying the analysis of call-by-value and call-
by-name languages, though call-by-need is often not supported due to difficul-

The Memorist Tale: Every Thunk Every Cost All At Once 25

ties with modelling laziness. Along this line, the A-amor framework [36] is a
time complexity analysis framework based on amortization and affine types,
which monadically simulates call-by-value with call-by-name. The dependently
typed logical framework calf [32,31] unifies the two via a call-by-push-value
language [25], and has been extended to handle other computational effects by
incorporating inequational reasoning into the framework’s type theory [12].

On the verification side, the TiML language [41] has built-in support for ver-
ifying time complexity bounds of programs using its dependent and refinement
types inspired type system, with users providing complexity bound specifications
in type annotations. The Rocq library by [28] verifies time complexity by anno-
tating information about cost in a monadic type. Formalizing the big-O notation
and extending the Separation Logic, the framework by [13] verifies worst-case
time complexity bounds for higher-order imperative programs in Rocq.

8 Conclusion and Future Work

We have presented the Memorist Semantics, a novel cost semantics for call-by-
need evaluation that tracks thunk usage and computation cost in a deterministic
manner. OQur approach improves prior approaches by enabling cost analysis that
evaluates independently of demand context, avoids code duplication, and pro-
vides fine-grained cost attribution to individual components of a term. Crucially,
this semantics enables cost analysis of lazy programs that preserves the determin-
istic and compositional call-by-value evaluation structure, making it an intuitive
practical foundation for further cost-aware program reasoning.

We have presented a proof of concept implementation in Rocq and verified
cost of some functions. Apart from addressing the aforementioned limitations, we
also plan to apply it on larger case studies, including verifying amortized cost of
lazy functional data structures [34]. We would like to optimize the framework for
easier use in practice, conduct quantitative experiments and benchmark against
related frameworks. By formalizing our model in Rocq, we provide a rigorous
basis for developing cost analysis frameworks for real-world lazy functional lan-
guages such as Haskell, and pave the way for future work on verifying compiler
optimizations, e.g., dead code elimination. In the future, we plan to investi-
gate these applications and the utilization of tools such as hs-to-coq [38, 3] to
automatically translate Haskell code for analysis. Moreover, with an executable
semantics, lazy cost can be inferred directly via program execution, and the same
program only needs to be evaluated once for analysing various demands. Such
features can potentially be helpful in property-based testing, another application
area we plan to investigate in the future.

References

1. Ahman, D., Uustalu, T.: Update monads: Cointerpreting directed contain-
ers. In: Matthes, R., Schubert, A. (eds.) 19th International Conference on
Types for Proofs and Programs, TYPES 2013, April 22-26, 2013, Toulouse,

26

10.

11.

Xing Li, Yao Li, Peter Schachte, and Christine Rizkallah

France. LIPIcs, vol. 26, pp. 1-23. Schloss Dagstuhl - Leibniz-Zentrum fiir Infor-
matik (2013). https://doi.org/10.4230/LIPICS. TYPES.2013.1, https://doi.org/
10.4230/LIPIcs.TYPES.2013.1

Bjerner, B., Holmstréom, S.: A composition approach to time analysis of first order
lazy functional programs. In: Proceedings of the fourth international conference
on Functional programming languages and computer architecture - FPCA ’89. pp.
157-165. FPCA 89, ACM Press (1989). https://doi.org/10.1145/99370.99382
Breitner, J., Spector-Zabusky, A., Li, Y., Rizkallah, C., Wiegley, J., Cohen, J.M.,
Weirich, S.: Ready, set, verify! applying hs-to-cogm to real-world haskell code.
J. Funct. Program. 31, eb (2021). https://doi.org/10.1017/S0956796820000283,
https://doi.org/10.1017/5S0956796820000283

van Briigge, J.: Liquid amortization: Proving amortized complexity with
liquidhaskell (functional pearl). In: Vazou, N., Morris, J.G. (eds.) Pro-
ceedings of the 17th ACM SIGPLAN International Haskell Symposium,
Haskell 2024, Milan, Italy, September 6-7, 2024. pp. 97-108. ACM (2024).
https://doi.org/10.1145/3677999.3678282, https://doi.org/10.1145/3677999.
3678282

. Carbonneaux, Q., Hoffmann, J., Reps, T.W., Shao, Z.: Automated resource anal-

ysis with coq proof objects. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided
Verification - 29th International Conference, CAV 2017, Heidelberg, Germany,
July 24-28, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol.
10427, pp. 64-85. Springer (2017). https://doi.org/10.1007,/978-3-319-63390-9 4,
https://doi.org/10.1007/978-3-319-63390-9_4

Claessen, K.: Finger trees explained anew, and slightly simplified (functional
pearl). In: Schrijvers, T. (ed.) Proceedings of the 13th ACM SIGPLAN Inter-
national Symposium on Haskell, HaskellQICFP 2020, Virtual Event, USA, Au-
gust 7, 2020. pp. 31-38. ACM (2020). https://doi.org/10.1145/3406088.3409026,
https://doi.org/10.1145/3406088.3409026

Cutler, J.W., Licata, D.R., Danner, N.: Denotational recurrence extraction for
amortized analysis. Proc. ACM Program. Lang. 4(ICFP), 97:1-97:29 (2020).
https://doi.org/10.1145/3408979, https://doi.org/10.1145/3408979

Danielsson, N.A.: Lightweight semiformal time complexity analysis for purely func-
tional data structures. In: Necula, G.C., Wadler, P. (eds.) Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2008, San Francisco, California, USA, January 7-12, 2008. pp. 133~
144. ACM (2008). https://doi.org/10.1145/1328438.1328457, https://doi.org/10.
1145/1328438.1328457

Danner, N., Licata, D.R.: Denotational semantics as a foundation for cost
recurrence extraction for functional languages. J. Funct. Program. 32, 8
(2022). https://doi.org/10.1017/S095679682200003X, https://doi.org/10.1017/
S095679682200003X

Danner, N., Licata, D.R., Ramyaa: Denotational cost semantics for functional
languages with inductive types. In: Fisher, K., Reppy, J.H. (eds.) Proceed-
ings of the 20th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015. pp. 140-
151. ACM (2015). https://doi.org/10.1145/2784731.2784749, https://doi.org/10.
1145/2784731.2784749

Danner, N., Paykin, J., Royer, J.S.: A static cost analysis for a higher-
order language. In: Might, M., Horn, D.V., Abel, A., Sheard, T. (eds.)
Proceedings of the 7th Workshop on Programming languages meets pro-

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

The Memorist Tale: Every Thunk Every Cost All At Once 27

gram verification, PLPV 2013, Rome, Italy, January 22, 2013. pp. 25—
34. ACM (2013). https://doi.org/10.1145,/2428116.2428123, https://doi.org/10.
1145/2428116.2428123

Grodin, H., Niu, Y., Sterling, J., Harper, R.: Decalf: A directed, effectful cost-
aware logical framework. Proc. ACM Program. Lang. 8(POPL), 273-301 (2024).
https://doi.org/10.1145/3632852, https://doi.org/10.1145/3632852

Guéneau, A., Charguéraud, A., Pottier, F.: A fistful of dollars: Formalizing
asymptotic complexity claims via deductive program verification. In: Ahmed,
A. (ed.) Programming Languages and Systems - 27th European Symposium on
Programming, ESOP 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April
14-20, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10801, pp.
533-560. Springer (2018). https://doi.org/10.1007,/978-3-319-89884-1 19, https:
//doi.org/10.1007/978-3-319-89884-1_19

Hackett, J., Hutton, G.: Call-by-need is clairvoyant call-by-value. Proc. ACM
Program. Lang. 3(ICFP), 114:1-114:23 (2019). https://doi.org/10.1145/3341718,
https://doi.org/10.1145/3341718

Handley, M.A.T., Vazou, N., Hutton, G.: Liquidate your assets: reasoning about
resource usage in liquid haskell. Proc. ACM Program. Lang. 4(POPL), 24:1-24:27
(2020). https://doi.org/10.1145/3371092, https://doi.org/10.1145/3371092
Hoffmann, J., Aehlig, K., Hofmann, M.: Resource aware ML. In: Mad-
husudan, P., Seshia, S.A. (eds.) Computer Aided Verification - 24th In-
ternational Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012
Proceedings. Lecture Notes in Computer Science, vol. 7358, pp. 781-786.
Springer (2012). https://doi.org/10.1007/978-3-642-31424-7 64, https://doi.
org/10.1007/978-3-642-31424-7_64

Hoffmann, J., Das, A., Weng, S.: Towards automatic resource bound anal-
ysis for ocaml. In: Castagna, G., Gordon, A.D. (eds.) Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 2017, Paris, France, January 18-20, 2017. pp. 359-373.
ACM (2017). https://doi.org/10.1145/3009837.3009842, https://doi.org/10.
1145/3009837.3009842

Hoffmann, J., Hofmann, M.: Amortized resource analysis with polynomial poten-
tial. In: Gordon, A.D. (ed.) Programming Languages and Systems, 19th Euro-
pean Symposium on Programming, ESOP 2010, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2010, Paphos,
Cyprus, March 20-28, 2010. Proceedings. Lecture Notes in Computer Science,
vol. 6012, pp. 287-306. Springer (2010). https://doi.org/10.1007/978-3-642-11957-
6 16, https://doi.org/10.1007/978-3-642-11957-6_16

Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: Aiken, A., Morrisett, G. (eds.) Conference Record of POPL
2003: The 30th SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, New Orleans, Louisisana, USA, January 15-17, 2003. pp. 185-197.
ACM (2003). https://doi.org/10.1145/604131.604148, https://doi.org/10.1145/
604131.604148

Hughes, J.: Why functional programming matters. Comput. J. 32(2),
98-107 (1989). https://doi.org/10.1093/COMJINL/32.2.98, https://doi.org/10.
1093/comjnl/32.2.98

Jost, S., Hammond, K., Loidl, H., Hofmann, M.: Static determination of quanti-
tative resource usage for higher-order programs. In: Hermenegildo, M.V., Pals-

28

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Xing Li, Yao Li, Peter Schachte, and Christine Rizkallah

berg, J. (eds.) Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2010, Madrid, Spain, January
17-23, 2010. pp. 223-236. ACM (2010). https://doi.org/10.1145/1706299.1706327,
https://doi.org/10.1145/1706299.1706327

Jost, S., Vasconcelos, P.B., Florido, M., Hammond, K.: Type-based cost
analysis for lazy functional languages. J. Autom. Reason. 59(1), 87-120
(2017). https://doi.org/10.1007/S10817-016-9398-9, https://doi.org/10.1007/
s10817-016-9398-9

Kavvos, G.A., Morehouse, E., Licata, D.R., Danner, N.: Recurrence extraction
for functional programs through call-by-push-value. Proc. ACM Program. Lang.
4(POPL), 15:1-15:31 (2020). https://doi.org/10.1145 /3371083, https://doi.org/
10.1145/3371083

Launchbury, J.: A natural semantics for lazy evaluation. In: Deusen, M.S.V.,
Lang, B. (eds.) Conference Record of the Twentieth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Charleston,
South Carolina, USA, January 1993. pp. 144-154. ACM Press (1993).
https://doi.org/10.1145/158511.158618, https://doi.org/10.1145/158511.158618
Levy, P.B.: Call-By-Push-Value: A Functional/Imperative Synthesis, Semantics
Structures in Computation, vol. 2. Springer (2004)

Li, Y., Xia, L., Weirich, S.: Reasoning about the garden of forking paths. Proc.
ACM Program. Lang. 5(ICFP), 1-28 (2021). https://doi.org/10.1145/3473585,
https://doi.org/10.1145/3473585

Coq development team: The Coq proof assistant (Sep 2024).
https://doi.org/10.5281 /zenodo.14542673, https://doi.org/10.5281/zenodo.
14542673

McCarthy, J.A., Fetscher, B., New, M.S., Feltey, D., Findler, R.B.: A coq li-
brary for internal verification of running-times. Sci. Comput. Program. 164, 49-65
(2018). https://doi.org/10.1016,/J.SCICO.2017.05.001, https://doi.org/10.1016/
Jj.scico.2017.05.001

Meével, G., Jourdan, J., Pottier, F.: Time credits and time receipts in Iris. In:
Caires, L. (ed.) Programming Languages and Systems - 28th European Symposium
on Programming, ESOP 2019, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-
11, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11423, pp. 3—29.
Springer (2019). https://doi.org/10.1007,/978-3-030-17184-1 1, https://doi.org/
10.1007/978-3-030-17184-1_1

Moreira, S., Vasconcelos, P.B.,; Florido, M.: Resource analysis for lazy eval-
uation with polynomial potential. In: Chitil, O. (ed.) IFL 2020: 32nd
Symposium on Implementation and Application of Functional Languages,
Virtual Event / Canterbury, UK, September 2-4, 2020. pp. 104-114.
ACM (2020). https://doi.org/10.1145/3462172.3462196, https://doi.org/10.
1145/3462172.3462196

Niu, Y., Harper, R.: A metalanguage for cost-aware denotational seman-
tics. In: 38th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2023, Boston, MA, USA, June 26-29, 2023. pp. 1-14. IEEE
(2023). https://doi.org/10.1109/LICS56636.2023.10175777, https://doi.org/10.
1109/LICS56636.2023.10175777

Niu, Y., Sterling, J., Grodin, H., Harper, R.: A cost-aware logical framework. Proc.
ACM Program. Lang. 6(POPL), 1-31 (2022). https://doi.org/10.1145/3498670,
https://doi.org/10.1145/3498670

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

The Memorist Tale: Every Thunk Every Cost All At Once 29

O’Hearn, P.W.: Incorrectness logic. Proc. ACM Program. Lang. 4(POPL), 10:1-
10:32 (2020). https://doi.org/10.1145/3371078, https://doi.org/10.1145/3371078
Okasaki, C.: Purely functional data structures. Cambridge University Press (1999)
Pottier, F., Guéneau, A., Jourdan, J.H., Mével, G.: Thunks and debits in separation
logic with time credits. Proc. ACM Program. Lang. 8(POPL) (2024), https://hal.
science/hal-04238691/file/main.pdf

Rajani, V., Gaboardi, M., Garg, D., Hoffmann, J.: A unifying type-theory for
higher-order (amortized) cost analysis. Proc. ACM Program. Lang. 5(POPL), 1-
28 (2021). https://doi.org/10.1145/3434308, https://doi.org/10.1145/3434308
Sands, D.: Complexity analysis for a lazy higher-order language. In: Jones, N.D.
(ed.) ESOP’90, 3rd European Symposium on Programming, Copenhagen, Den-
mark, May 15-18, 1990, Proceedings. Lecture Notes in Computer Science, vol. 432,
pp. 361-376. Springer (1990). https://doi.org/10.1007/3-540-52592-0 74, https:
//doi.org/10.1007/3-540-52592-0_74

Spector-Zabusky, A., Breitner, J., Rizkallah, C., Weirich, S.: Total Haskell is
reasonable Coq. In: Andronick, J., Felty, A.P. (eds.) Proceedings of the 7th
ACM SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2018, Los Angeles, CA, USA, January 8-9, 2018. pp. 14-27. ACM (2018).
https://doi.org/10.1145 /3167092, https://doi.org/10.1145/3167092

Spies, S., Gaher, L., Tassarotti, J., Jung, R., Krebbers, R., Birkedal, L., Dreyer, D.:
Later credits: resourceful reasoning for the later modality. Proc. ACM Program.
Lang. 6(ICFP), 283-311 (2022). https://doi.org/10.1145/3547631, https://doi.
org/10.1145/3547631

Vazou, N.: Liquid Haskell: Haskell as a Theorem Prover. Ph.D. thesis, Univer-
sity of California, San Diego, USA (2016), http://www.escholarship.org/uc/item/
8dmo57ws

Wang, P., Wang, D., Chlipala, A.: Timl: a functional language for practical com-
plexity analysis with invariants. Proc. ACM Program. Lang. 1(OOPSLA), 79:1-
79:26 (2017). https://doi.org/10.1145/3133903, https://doi.org/10.1145/3133903
Xia, L., Israel, L., Kramarz, M., Coltharp, N., Claessen, K., Weirich, S., Li, Y.:
Story of your lazy function’s life: A bidirectional demand semantics for mechanized
cost analysis of lazy programs. Proc. ACM Program. Lang. 8(ICFP), 30-63 (2024).
https://doi.org/10.1145/3674626, https://doi.org/10.1145/3674626

