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Freer Arrows and Why You Need Them
GRANT VANDOMELEN, Portland State University, USA
YAO LI, Portland State University, USA

Freer monads are a useful structure commonly used in various domains due to its expressiveness. However,
a known issue with freer monads is that they are not amenable to static analysis. This paper explores freer
arrows, a structure that is relatively expressive and amenable to static analysis. We propose several variants of
freer arrows, including basic freer arrows and bridged freer arrows. We define an equivalence relation for
freer arrows that compares their semantical parts semantically and their syntactic parts syntactically. Finally,
we conduct a few case studies to demonstrate the usefulness of freer arrows.
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1 INTRODUCTION
We love monads [Moggi 1991; Wadler 1992]. We use them all the time. Why not? They are general.
They are abstract. They are expressive. They allow us to do diverse things under the same interface.

For this reason, it should be no surprise that structures like freer monads [Kiselyov and Ishii
2015] and their variants [Capretta 2005; Dylus et al. 2019; McBride 2015; Piróg and Gibbons 2014;
Swamy et al. 2020; Xia et al. 2020] have been used in various domains including choreographic
programming [Shen et al. 2023], concurrency [Marlow et al. 2014], algebraic effects [Dev et al. 2024;
Maguire 2025; Wu et al. 2025], specifications [Letan et al. 2018; Ye et al. 2022; Zhang et al. 2021],
embeddings [Chlipala 2021; Christiansen et al. 2019; Korkut et al. 2025], testing [Li et al. 2021],
information-flow analysis [Silver et al. 2023; Silver and Zdancewic 2021], etc.

However, the more expressive an interface is, the less we know about it.
In particular, the dynamic nature ofmonadsmake them impossible to be statically analyzed [Capri-

otti and Kaposi 2014; Li and Weirich 2022; Mokhov et al. 2019, 2020]. For example, it is impossible to
define a function that counts the number of effect invocations in a freer monad without interpreting
it, even if that number does not depend on results of effect invocations.
In this paper, we explore a different structure that offers an alternative trade-off between ex-

pressiveness and static analyzeability: freer arrows. Arrows are an abstraction initially proposed
by Hughes [2000] as a generalization of monads. Later, Lindley et al. [2008] discover that arrows
sit between applicative functors and monads in terms of expressiveness. Although free arrows
have been studied by literatures like Rivas and Jaskelioff [2017], freer arrows have received little
attention. Our paper fills this gap.

We make the following contributions:
• We define basic freer arrows, including freer pre-arrows, freer arrows, and freer choice
arrows (Section 3).

• We propose a novel structure called bridged freer arrows, a partially-defunctionalized variant
of freer arrows that contains less “administrative” code and boilerplates compared with
freer arrows (Section 4).
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• We propose a novel equivalence relation for freer arrows and freer choice arrows that are
based on characteristic functions and similarity between two freer arrows that equate two
freer arrows even when they differ in inner existential types. We show that freer arrows
and freer choice arrows are lawful arrows based on the equivalence relation (Section 5).

• We present two case studies with freer arrows: a smaller one on states and simple key-value
stores, and a larger one based on choreographic programming framework HasChor [Shen
et al. 2023] (Section 6–7).

In addition, we discuss the background in Section 2 and related work in Section 8. We conclude
this paper and discuss future work in Section 9.

2 BACKGROUND
2.1 Arrows and Profunctors
Arrows were proposed by Hughes [2000] as a generalization of monads. It was later that people
realized that arrows are profunctors [Asada 2010; Asada and Hasuo 2010; Jacobs et al. 2009]. For this
reason, libraries on arrows and profunctors are not organized together in Haskell. For consistency
of presentation, we instead present the definitions of arrows and profunctors together in this paper.
However, all the ideas and techniques discussed in this paper apply to using arrows from Haskell’s
base library or the profunctor library1 as well. In fact, the code in our supplementary materials is
mostly based on base and profunctor libraries.

We show the definition of profunctors and arrows in Fig. 1. A Profunctor is parameterized by two
arguments (line 1). It is contravariant on its first argument and covariant on its second argument,
as indicated by its dimap method (line 2). It additionally includes a method lmap specifically for the
contravariant argument and a method rmap for the covariant argument, but we omit them here
as they can be defined using dimap. Function arrows are a classic instance of Profunctor, as its
argument is contravariant and its return value is covariant.
A StrongProfunctor is equipped with one additional method first' that “transform” a pro-

functor p a b to p (a, c) (b, c) for arbitrary c (lines 4–5). A ChoiceProfunctor is similar to a
StrongProfunctor, but its left' method works on sum types instead of product types (lines 7–8).
There is also a second' method for StrongProfunctors and a right' for ChoiceProfunctors that can
be defined in terms of first' and left', so we omit them here. Function arrows are both strong
profunctors and choice profunctors.

Arrows start at Category. A Category has two methods: id for identity category (line 11) and (.)

for category compositions (lines 12–13). A PreArrow is a Category with an additional arr method
that takes a function to produce a category (lines 15–16). Arrows add a first method to a PreArrow

that shares the same type as the first' method of StrongProfunctors. Similarly, ChoiceArrows add
a left methods to a PreArrow that shares the same type as the left' method of ChoiceProfunctors.
Function arrows are arrows and choice arrows.
Lines 24–34 show that pre-arrows are profunctors, arrows are strong profunctors, and choice

arrows are choice profunctors.
Lines 36–39 define a commonly used operator (>>>) for categories, which is essentially flipping

the arguments of (.).
Profunctors and arrows are expected to follow certain laws. We show these laws in Appendix A.

1https://github.com/ekmett/profunctors/
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Freer Arrows and Why You Need Them 3

1 class Profunctor (p :: Type -> Type -> Type) where

2 dimap :: (a -> b) -> (c -> d) -> p b c -> p a d

3
4 class Profunctor p => StrongProfunctor p where

5 first' :: p a b -> p (a, c) (b, c)

6
7 class Profunctor p => ChoiceProfunctor p where

8 left' :: p a b -> p (Either a c) (Either b c)

9
10 class Category (cat :: k -> k -> Type) where

11 id :: forall (a :: k). cat a a

12 (.) :: forall (b :: k) (c :: k) (a :: k).

13 cat b c -> cat a b -> cat a c

14
15 class Category a => PreArrow a where

16 arr :: (b -> c) -> a b c

17
18 class PreArrow a => Arrow a where

19 first :: a b c -> a (b, d) (c, d)

20
21 class PreArrow a => ChoiceArrow a where

22 left :: a b c -> a (Either b d) (Either c d)

23
24 -- PreArrows are Profunctors

25 instance PreArrow a => Profunctor a where

26 dimap f g a = arr f >>> a >>> arr g

27
28 -- Arrows are StrongProfunctors

29 instance Arrow a => StrongProfunctor a where

30 first' = first

31
32 -- ChoiceArrows are ChoiceProfunctors

33 instance ChoiceArrow a => ChoiceProfunctor a where

34 left' = left

35
36 -- A commonly used operator for categories

37 (>>>) :: forall k (a :: k) (b :: k) (c :: k) (cat :: k -> k -> Type).

38 Category cat => cat a b -> cat b c -> cat a c

39 (>>>) = flip (.)

Fig. 1. Definitions of Profunctor and Strong typeclasses. For conciseness, we only include typeclass methods
that are necessary for a minimal implementation. In Haskell’s profunctor library, StrongProfunctor is
simply called Strong and ChoiceProfunctor is called Choice. We use the full names in this paper to avoid
potential confusions.
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2.2 The Expressiveness of Arrows
In Lindley et al. [2008], the authors discover that arrows sit between applicative functors and
monads in terms of expressiveness. They give an example based on the following state monad
interface:
get :: unit -> M Int

put :: Int -> M unit

We use M to represent a monad here.
In their paper, Lindley et al. show that we can define the following two functions using the

monad interface:
freshName :: M Name

freshName = get () >>= (\s -> put (s + 1) >>= (\u -> return (makeName s)))

ifZero :: (M A, M A) -> M A

ifZero k = get () >>= (\s -> if s == 0 then fst k else snd k)

If we instead use an arrow interface here (all monads can be converted to arrows using a Kleisli
construction shown by Hughes [2000]), we can only define freshName, but not ifZero. If we instead
use an applicative functor interface, we would not be able to define either freshName or ifZero. This
shows that arrows are between applicative functors and monads in terms of expressiveness power.

Furthermore, a static arrow arr that has an isomorphism between arr () (i -> o) and arr i o

is known to correspond to applicative functors. An ArrowApply arr that has an additional method
app :: arr (arr i o, i) o corresponds to a monad. Later, Mokhov et al. [2019] further show that
a choice arrow corresponds to selective functors.

2.3 Free Profunctors and Free Arrows
In their paper, Rivas and Jaskelioff [2017] define the following version of free arrows:

data Free a x y where

Hom :: (x -> y) -> Free a x y

Comp :: a x z -> Free a z y -> Free a x y

They further show that Free is a profunctor and a pre-arrow if a is a profunctor, and Free is a strong
profunctor and an arrow if a is a strong profunctor, given by the following definitions:

instance Profunctor a => Profunctor (Free a) where

dimap f g (Hom h) = Hom (g . h . f)

dimap f g (Comp x y) = Comp (lmap f x) (rmap g y)

instance Profunctor a => PreArrow (Free a) where

arr f = Hom f

c . (Hom f) = lmap f c

c . (Comp x y) = Comp x (c . y)

instance StrongProfunctor a => Arrow (Free a) where

first (Hom f) = Hom (first f)

first (Comp x y) = Comp (first' x) (first' y)

instance StrongProfunctor a => StrongProfunctor (Free a) where

first' = first

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA, Article . Publication date: September 2025.
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Freer Arrows and Why You Need Them 5

However, free arrows are somewhat unsatisfying as they require their first parameter to be a
strong profunctor. We want to make free arrows freer by lifting this restriction. This is important
because we want to use freer arrows with generic algebraic datatypes (GADTs) like the following:
-- |- A GADT for stateful effect.

data StateEff :: Type -> Type -> Type -> Type where

Get :: StateEff s a s

Put :: StateEff s s s

Such a GADT is not even a profunctor because one cannot define the dimap method on it.
This is where our work comes in.

3 BASIC FREER ARROWS
We present two variants of freer arrows: basic freer arrows and bridged freer arrows. Basic freer
arrows (or just freer arrows for short)2 have a simple structure but their definitions requires a
fair amount of “administrative” code to make types align. Therefore, we also proposed a bridged
version of freer arrows that avoid these issues. We first present freer arrows in this section. We will
introduce bridged freer arrows in Section 4.

3.1 Freer Pre-Arrows
We show the definition of freer pre-arrows in Fig. 2. A freer pre-arrow is parameterized by an effect
datatype e :: Type -> Type -> Type, an “input” datatype x :: Type, and an “output” datatype
y :: Type (line 1). There are only two constructors in a freer pre-arrow. The first constructor, Hom,
simply wraps a function of type x -> y inside it (line 2). The second constructor, Comp, is the key
for embedding effects and composing freer arrows (lines 3–4). There are two existential types in
the Comp constructor, namely a and b (i.e., they don’t appear in the type of FreerArrow). The Comp

constructor takes three arguments. First, there is a function argument x -> a that does some pure
computation that transform an x to type a (line 3). The value of type a is then passed to the effect
e a b that outputs a value of type b (line 3). Finally, there is another FreerArrow that takes the value
of type b and returns y (line 4).

The definition of FreerPreArrow can be obtained by inlining free profunctors in free arrows (Sec-
tion 2.3), similar to how Kiselyov and Ishii [2015] derive freer monads. The gives you:
data FreerArrowB e x y where

Hom :: (x -> y) -> FreerArrowB e x y

Comp :: (x -> a) -> (b -> z) -> e a b ->

FreerArrowB e z y -> FreerArrowB e x y

From this definition, we take one additional step by fusing the second function argument b -> z to
the function argument of the “inner” FreerArrow, which would have type z -> c, where c is a new
existential type.

We also show that FreerPreArrows are instances of Profunctor, Category, and PreArrow in lines 6–
24 of Fig. 2. When defining Profunctor’s dimap method, we pattern match on the FreerPreArrow.
In the case of Hom h, we use function composition (.) to compose h with both the “contravari-
ance function” and “covariance function” (line 8). In the case of Comp f' x y, we compose the
“contravariance function” with f' and pass the “covariance function” to the recursive call (line 9).
Typically, dimap is all we need to implement a Profunctor instance, as other functions like lmap and
rmap can be implemented using dimap. However, we implement lmap separately for FreerPreArrow
2In this paper, we sometimes use freer arrows to refer to all variants of freer arrows, we sometimes use the term to refer to
the specific definition FreerArrow. The context should be clear to distinguish the use of this term.
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1 data FreerPreArrow e x y where

2 Hom :: (x -> y) -> FreerPreArrow e x y

3 Comp :: (x -> a) -> e a b ->

4 FreerPreArrow e b y -> FreerPreArrow e x y

5
6 -- |- Freer pre-arrows are profunctors.

7 instance Profunctor (FreerPreArrow e) where

8 dimap f g (Hom h) = Hom (g . h . f)

9 dimap f g (Comp f' x y) = Comp (f' . f) x (dimap id g y)

10
11 -- lmap can be implemented more efficiently without recursion

12 lmap f (Hom h) = Hom (h . f)

13 lmap f (Comp f' x y) = Comp (f' . f) x y

14
15 -- |- Freer pre-arrows are categories.

16 instance Category (FreerPreArrow e) where

17 id = Hom id

18
19 f . (Hom g) = lmap g f

20 f . (Comp f' x y) = Comp f' x (f . y)

21
22 -- |- Freer pre-arrows are pre-arrows.

23 instance PreArrow (FreerPreArrow e) where

24 arr = Hom

25
26 -- |- The type for effect handlers.

27 type x :-> y = forall a b. x a b -> y a b

28
29 -- |- Freer pre-arrows can be interpreted into any pre-arrows, as long as we

30 -- can provide an effect handler.

31 interp :: (Profunctor arr, PreArrow arr) =>

32 (e :-> arr) -> FreerPreArrow e x y -> arr x y

33 interp _ (Hom f) = arr f

34 interp handler (Comp f x y) = lmap f (handler x) >>> interp handler y

Fig. 2. Key definitions of freer pre-arrows (FreerPreArrow) in Haskell.

because it can be implemented efficiently without any recursive calls (lines 11–13). This is crucial
for performance of freer arrows, as a FreerPreArrow can be quite long. Showing that FreerPreArrows
are an instance of Category (lines 15–20) and PreArrow (line 22–24) is straightforward by making
use of the fact that functions are categories and profunctors.

Finally, we can interpret a FreerPreArrow to any pre-arrow if we provide an “effect handler” (lines
26–34). An effect handler has type e :-> arr where e is an effect type and arr is a pre-arrow. We
use the type operator x :-> y to represent “transformations” from x a b to y a b for any a and
b (lines 26–27).3 When interpreting a FreerPreArrow, we do a case analysis on the freer pre-arrow.
3We borrow this notation from the profunctors library by Edward Kmett: https://hackage.haskell.org/package/profunctors-
5.6.2
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1 data FreerArrow e x y where

2 Hom :: (x -> y) -> FreerArrow e x y

3 Comp :: (x -> (a, c)) -> e a b ->

4 FreerArrow e (b, c) y -> FreerArrow e x y

5
6 -- |- Freer arrows are strong profunctors.

7 instance StrongProfunctor (FreerArrow e) where

8 first' (Hom f) = Hom $ first f

9 first' (Comp f a b) =

10 Comp (first f >>> assoc)

11 a (lmap unassoc (first' b))

12
13 -- |- Freer arrows are arrows.

14 instance Arrow (FreerArrow e) where

15 first = first'

16
17 -- |- Freer arrows can be interpreted into any arrows, as long as we can provide

18 -- an effect handler.

19 interp :: (Profunctor arr, Arrow arr) =>

20 (e :-> arr) -> FreerArrow e x y -> arr x y

21 interp _ (Hom f) = arr f

22 interp handler (Comp f x y) = lmap f (first (handler x)) >>>

23 interp handler y

24
25 -- Helper functions. Definitions omitted.

26 assoc :: ((a,b),c) -> (a,(b,c))

27 unassoc :: (a,(b,c)) -> ((a,b),c)

Fig. 3. Key definitions of freer arrows (FreerArrow) in Haskell.

In the case of Hom f, we simply apply the arr method of the pre-arrow arr to f (line 33). In the case
of Comp f x y, we use our handler to handle x, apply the lmap method of the pre-arrow arr to both
f and handler x, and compose it with the recursive interpretation of y (line 34).

3.2 Freer arrows
To define freer arrows, we need to enhance FreerPreArrow with products to enable defining first.
In fact, we only need to modify the Comp constructor. We show the definition of freer arrows in
Fig. 3.
Compared with FreerPreArrow, the new Comp constructor contains three existential types: a, b,

and c (lines 3–4). The return type of the function argument is changed to (a, c) (from a, line 3). The
input type of the inner freer arrow is changed to (b, c) (from b, line 4). The effect type e a b remains
unchanged. This means that the value of type c is simply “passed along” to the next FreerArrow
without being processed by e—this may seem redundant but it’s crucial for implementing the first
method (also known as the strength of arrows).
The definition of FreerArrow can be obtained by inlining free strong profunctors in free arrows

and fusing the “covariance function” of a Comp constructor with the “contravariance function” of
the inner freer arrow, similar to what we did with FreerPreArrow.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA, Article . Publication date: September 2025.
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FreerArrows are instances of Profunctor, Category, and PreArrow. These definitions are the
same as those of FreerPreArrow, so we omit them here. Instead, we show the implementation
of StrongProfunctor and Arrow in lines 6–15 on Fig. 3.

The implementation of StrongProfunctor is more tricky. In the case of Hom f, we apply the first
method of the function arrow to f (line 8). In the case of Comp f a b, we need a few extra steps to
take care of types. First, we apply the first method of the function arrow to f, which gives us a
product type in the form of ((_, _), _). To match the type with that of the effect a, we call assoc
to convert the product to the form of (_, (_, _)) (line 10). Finally, we call unassoc, the inverse of
assoc on the recursive evaluation first' b (line 11). Here, function calls to assoc and unassoc are
only to align types—they do not pose any computational significance, but we have to carry them
around when using first' method on FreerArrows.
Once we show that FreerArrow is a strong profunctor, it is trivial to show that it is also an

arrow (lines 14–15).
Finally, if we are provided with an effect handler, we can interpret a freer arrow to any arrows

using the interp function (lines 17–23). Compared with the interp function of FreerPreArrow, we
need to call first on handler x, due to the type of f (line 22). This is inevitable even for the segments
of a freer arrow that we do not use first. We talk about how to eliminate the administrative code
like assoc and unassoc and how to remove unnecessary calls to first in Section 4.

Showing that a FreerArrow is an instance of Arrow is not enough for showing that it is indeed an
arrow. We also need to show that the instance satisfies arrow laws (Appendix A). However, it turns
out that even though FreerArrow satisfies the arrow laws, finding the right equivalence relation
for FreerArrow is challenging, due to the flexibility of arrows. We will discuss the challenges, the
equivalence relation, and formal proof of arrow laws in Section 5.

We can statically count the number of events in a freer arrow using the following simple function:
count :: FreerArrow e x y -> Int

count (Hom _) = 0

count (Comp _ _ y) = 1 + count y

This will always give an exact count, since the sequence of events is known completely statically
and is not affected by the data inside the arrow.

3.3 Freer Choice Arrows
We also define freer choice arrows for use cases where conditionals are required. We show the key
definitions of freer choice arrows in Fig. 4.

The Hom constructor of FreerChoiceArrow (line 2) is the same as that of FreerArrow. However, the
Comp constructor adds one additional existential variable w (lines 3–6). The function argument can
either return a product of type (a, c), just like in FreerArrow, or return a value of type w (line 3).
In the first case, the value of type a will be passed to the effect of type e a b while the value of
type c is passed along (line 4). In the second case, the value of type w will be passed along without
invoking the effect at all. Finally, the inner FreerChoiceArrow needs to handle the new input type
Either (b, c) w (line 5).

We also show the definitions of first' and left'methods in lines 8–16 of Fig. 4. In the Hom cases,
we simply use the first or left methods of function choice arrows (line 9 and line 14).

The Comp cases are more complex. For the StrongProfunctor instance, we first apply the first

method of function arrows to f, which gives us a type of the form ((Either (_, _) _), _). We use
the distr function defined on line 27 to convert the type to a form of Either ((_, _), _) (_, _).4
After that, we apply the leftmethod of function choice arrows to assoc to convert the type from the
4This corresponds to the distributivity of multiplication over additions, hence the function name distr.
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Freer Arrows and Why You Need Them 9

1 data FreerChoiceArrow e x y where

2 Hom :: (x -> y) -> FreerChoiceArrow e x y

3 Comp :: (x -> Either (a, c) w) ->

4 e a b ->

5 FreerChoiceArrow e (Either (b, c) w) y ->

6 FreerChoiceArrow e x y

7
8 instance StrongProfunctor (FreerChoiceArrow e) where

9 first' (Hom f) = Hom $ first f

10 first' (Comp f a b) = Comp (first f >>> distr >>> left assoc)

11 a (lmap (left unassoc >>> undistr) (first' b))

12
13 instance ChoiceProfunctor (FreerChoiceArrow e) where

14 left' (Hom f) = Hom $ left f

15 left' (Comp f a b) = Comp (left f >>> assocsum)

16 a (lmap unassocsum (left' b))

17
18 -- |- Freer choice arrows can be interpreted into any choice arrows, as long as

19 -- we can provide an effect handler.

20 interp :: (Profunctor arr, ArrowChoice arr) =>

21 (e :-> arr) -> FreerChoiceArrow e x y -> arr x y

22 interp _ (Hom f) = arr f

23 interp handler (Comp f x y) = lmap f (left (first (handler x))) >>>

24 interp handler y

25
26 -- Helpful functions. Definitions omitted.

27 distr :: (Either (a, b) c, d) -> Either ((a, b), d) (c, d)

28 undistr :: Either ((a, b), d) (c, d) -> (Either (a, b) c, d)

29 assocsum :: Either (Either x y) z -> Either x (Either y z)

30 unassocsum :: Either x (Either y z) -> Either (Either x y) z

Fig. 4. Key definitions for FreerChoiceArrow. We omit the definitions of Profunctor, Category, PreArrow,
and Arrow as they are similar to those of FreerArrow.

previous form to Either (_, (_, _)) (_, _) (line 10). Finally, we apply left unassoc >>> undistr,
which is the inverse of distr >>> left assoc, to the recursive call (line 11). Note that undistr, the
inverse of distr, is defined on line 28.
For the ChoiceProfunctor instance, we first apply the left method of function arrows to f,

which gives us a type of form Either (Either (_, _) _) _. We then apply the assocsum function to
convert the result to the form of Either (_, _) (Either _ _) (line 15). Finally, we apply unassocsum,
the inverse of assocsum to the recursive call (line 16).
We have even more administrative code to align types in freer choice arrows. In particular,

both distr >>> left assoc and left unassoc >>> undistr in the definition of first', and both
assocsum and unassocsum in the definition of left', pose no computational significance. We talk
about another version of freer arrows that avoid these administrative code in the next section.

The interp function shows that a freer choice arrow can be interpreted into any choice arrows if
provided with an effect handler (lines 18–24). In the case of Comp, we apply first to handler x, just

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA, Article . Publication date: September 2025.



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Grant VanDomelen and Yao Li

like in the interprter of FreerArrows, but we also apply left to the result of first (handler x) (line
23). Similar to the interpreter of FreerArrows, this is inevitable even for the segments of a freer
arrow that we do not use first or left. We talk about how to remove these unnecessary calls to
first and left in the next section.
Since the freer choice arrow is a sequence of events that might happen depending on the

contravariant function in Comp, we can only statically over-approximate the number of events that
will run in the arrow:

overCount :: FreerChoiceArrow e x y -> Int

overCount (Hom _) = 0

overCount (Comp _ _ y) = 1 + overCount y

4 BRIDGED FREER ARROWS
There are a few issues with the definitions of freer arrows and freer choice arrows: (1) there are a
lot of administrative code for making the types aligned (e.g., in first' and left'), and (2) the type
of the Comp constructor forces the interpreter to call dimap, first (for freer arrows), and left (for
freer choice arrows) even when it’s not necessary.
In this section, we propose bridged freer arrows to resolve these issues with freer arrows and

freer choice arrows. The key idea of bridged freer arrows is to defunctionalize [Koppel 2019] the
function argument in the Comp constructor, similar to the approach taken in Chupin and Nilsson
[2019]. We call the defunctionalized arguments bridges.

4.1 Bridges
We show the definitions of bridges in Fig. 5. A Bridge datatype is parameterized by four type
parameters (line 2). Intuitively, a bridge describes connections of an effect in a freer arrow with its
“previous” and “next” freer arrow component. A bridge of type Bridge x a b y connects an input of
type x to an effect of type e a b, and then connects the effect to the “next” freer arrow’s input type y.
Therefore, an IdBridge has type Bridge x x y y, which means nothing is done before passing x to
the effect and nothing is done before passing y from the effect (line 3). The FirstBridge constructor
corresponds to the first' method of profunctors and the first method of arrows: it takes a
bridge of type Bridge x a b y and turns it into Bridge (x, c) a b (y, c) (line 5). SecondBridge
works similarly (line 6). The LeftBridge constructor corresponds to the left' method of choice
profunctors and the left method of arrows: it takes a bridge of type Bridge x a b y and turns it
into Bridge (Either x c) a b (Either y c) (line 8). RightBridge works similarly (line 9). Finally,
we have LmapBridge for functions that do not fall in one of the bridge patterns (line 11).

The function cmapBridge is like a smart constructor for LmapBridge (lines 13–16). When the bridge
is already an LmapBridge, it composes the function with the function inside LmapBridge. Otherwise,
we wrap the original bridge with LmapBridge.

Finally, the bridge function “interpret”s a Bridge x a b y to a function p a b -> p x y, where p
is both a strong profunctor and choice profunctor (lines 18–25).

Bridges are contravariant functors. The Haskell base library defines the following typeclass for
contravariant functors:

class Contravariant f where

contramap :: (a' -> a) -> (f a -> f a')

In the bottom part of Fig. 5 (lines 27–32), we show that bridges are in fact a contravariant functor
if we switch its arguments. In fact, the definition of its contramap method is exactly cmapBridge.
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1 -- |- Definitions of bridges.

2 data Bridge x a b y where

3 IdBridge :: Bridge x x y y

4
5 FirstBridge :: Bridge x a b y -> Bridge (x, c) a b (y, c)

6 SecondBridge :: Bridge x a b y -> Bridge (c, x) a b (c, y)

7
8 LeftBridge :: Bridge x a b y -> Bridge (Either x c) a b (Either y c)

9 RightBridge :: Bridge x a b y -> Bridge (Either c x) a b (Either c y)

10
11 LmapBridge :: (w -> x) -> Bridge x a b y -> Bridge w a b y

12
13 -- Bridges are contravariant

14 cmapBridge :: (w -> x) -> Bridge x a b y -> Bridge w a b y

15 cmapBridge f (LmapBridge g r) = LmapBridge (g . f) r

16 cmapBridge f r = LmapBridge f r

17
18 -- Bridges transform strong profunctors and choice profunctors

19 bridge :: (Strong p, Choice p) => Bridge x a b y -> p a b -> p x y

20 bridge IdBridge = id

21 bridge (FirstBridge r) = first' . bridge r

22 bridge (SecondBridge r) = second' . bridge r

23 bridge (LeftBridge r) = left' . bridge r

24 bridge (RightBridge r) = right' . bridge r

25 bridge (LmapBridge f r) = lmap f . bridge r

26
27 -- | We don't use this. This is just to show that Router is a contravariant

28 -- functor.

29 newtype ContraBridge a b y x = ContraBridge (Bridge x a b y)

30
31 instance Contravariant (ContraBridge a b y) where

32 contramap f (ContraBridge r) = ContraBridge (cmapBridge f r)

Fig. 5. Definitions of bridges.

However, we do not use this typeclass in our development because we like to keep the original
ordering of Bridge’s type parameters.
Bridges can be made into a profunctor, instead of just a contravariant functor, by adding con-

structors like RmapBridge :: Bridge x a b y -> (y -> w) -> Bridge x a b w. However, we inten-
tionally define bridges in the way they are presented to make them simple. The definition suffices
to be used in bridged freer arrows.

4.2 Bridged Freer Arrows
We show the definition of bridged freer arrows in Fig. 6. Comparing with other variants of freer
arrows such as FreerArrow (Fig. 3) and FreerChoiceArrow (Fig. 4), the major difference is that we
replace the function argument in the Comp constructor with a bridge (line 3).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA, Article . Publication date: September 2025.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Grant VanDomelen and Yao Li

1 data FreerArrow e x y where

2 Hom :: (x -> y) -> FreerArrow e x y

3 Comp :: Bridge x a b z -> e a b ->

4 FreerArrow e z y -> FreerArrow e x y

5
6 embed :: e x y -> FreerArrow e x y

7 embed f = Comp IdBridge f id

8
9 -- Category instance omitted.

10
11 instance Profunctor (FreerArrow e) where

12 dimap f g (Hom h) = Hom $ dimap f g h

13 dimap f g (Comp r x y) = Comp (cmapBridge f r) x (dimap id g y)

14
15 -- lmap can be implemented more efficiently without recursion

16 lmap f (Hom h) = Hom $ lmap f h

17 lmap f (Comp r x y) = Comp (cmapBridge f r) x y

18
19 instance StrongProfunctor (FreerArrow e) where

20 first' (Hom r) = Hom $ first r

21 first' (Comp (LmapBridge f r) a b) =

22 lmap (first f) $ first' (Comp r a b)

23 first' (Comp r a b) =

24 Comp (FirstBridge r) a (first' b)

25
26 -- We also define [second'] separately using [SecondBridge]. Omitted here

27 -- since the definition is similar to [first'].

28
29 instance ChoiceProfunctor (FreerArrow e) where

30 left' (Hom r) = Hom $ left r

31 left' (Comp (LmapBridge f r) a b) =

32 lmap (left f) $ left' (Comp r a b)

33 left' (Comp r a b) =

34 Comp (LeftBridge r) a (left' b)

35
36 -- We also define [right'] separately using [RightBridge]. Omitted here

37 -- since the definition is similar to [left'].

38
39 interp :: (Strong arr, Choice arr, Arrow arr) =>

40 (e :-> arr) -> FreerArrow e x y -> arr x y

41 interp _ (Hom r) = arr r

42 interp handler (Comp f x y) = bridge f (handler x) >>> interp handler y

Fig. 6. Definitions of bridged freer arrows.

The embed function of bridged freer arrows simply wraps the effect f with IdBridge inside a Comp
constructor (lines 6–7).
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Freer Arrows and Why You Need Them 13

We omit the definition of bridged freer arrows’ Category instance as the definition is similar
to that of FreerPreArrows (Fig. 2). In the Profunctor instance, we call the cmapBridge function
defined in the previous section (Fig. 5) to compose the function with bridges (lines 11–17). In
the StrongProfunctor instance: if the bridged freer arrow is a Hom, we just call the first method
of function arrows (line 20); if the bridged freer arrow is a Comp _ a b with an LmapBridge f r,
we call the first method of function arrows on f and make a recursive call to Comp r a b (lines
21–22). Otherwise, we simply wrap the original bridge with a FirstBridge and makes a recursive
call (lines 23–24). In addition, we also define the second' method (instead of relying on the default
implementation that uses first') so that it uses SecondBridge. However, we omit that definition
here for conciseness as it is similar to the definition of first'. The definition of ChoiceProfunctor
instance also works similarly (lines 29–37).

Finally, we can define an interpreter for bridged freer arrows using the bridge function defined in
the previous section (Fig. 5). Comparing with the interpreters of FreerArrow and FreerChoiceArrow,
this interpreter only calls first' when there is a FirstBridge, only calles left' when there is a
LeftBridge, and only calls lmap when there is a LmapBridge, etc.
Thanks to bridges, the definitions of bridged freer arrows do not contain a heavy amount of

administrative code. Additionally, we have slightly more information to use for static analysis,
especially when IdBridge is used at the top-level in Comp.
We can use this extra information to under-approximate the number of events that will run

as well as over-approximating them as in freer choice arrows. The implementation of overCount
remains the same, but we can define the following function for the under-approximation of the
count:

mightSkip :: Bridge x a b y -> Bool

mightSkip IdBridge = False

mightSkip (FirstBridge b) = mightSkip b

mightSkip (SecondBridge b) = mightSkip b

mightSkip (LeftBridge _) = True

mightSkip (RightBridge _) = True

mightSkip (LmapBridge _ b) = mightSkip b

underCount :: FreerArrow e x y -> Int

underCount (Hom _) = 0

underCount (Comp b _ y) = (if mightSkip b then 0 else 1) + underCount y

We use a helper function mightSkip to identify bridges which might cause the following event
not to run. If the event might not run, we add 0 instead of 1 to the count to get a tight under-
approximation.

5 EQUIVALENCE OF FREER ARROWS
Showing that freer arrows can implement methods like first is not enough to show that they are
indeed arrows. We need to show that they satisfy all the arrow laws. For freer pre-arrows, it is
straightforward to show that they satisfy all the profunctor laws and pre-arrow laws with respect
to Leibniz equality (with the assumption of functional extensionality). However, we cannot do the
same for freer arrows or freer choice arrows, because methods like first and left are too flexible.

In this section, we first discuss why methods like first and left pose great challenges. We then
define new equivalence relations ≈ for freer arrows and freer choice arrows that satisfy all the arrow
laws and choice arrow laws, respectively. All the definitions, theorems, and proofs described in this
section have been formalized in Rocq prover (formerly Coq theorem prover) [Coq development team
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2024], but we will use Haskell code throughout this section for consistency. We attach all the Rocq
Prover formalizations as supplementary material of this submission and we plan to release them in
a publicly available artifact.

5.1 Challenges
To understand challenges imposed by methods like first and left, let’s consider the following law
regarding FreerArrow and first:
first f >>> arr fst = arr fst >>> f

Here, we use = to represent Leibniz equality.
To prove that freer arrows satisfy this law, we can do an induction on f:
In the base case, we would like to show that first (Hom y) >>> arr fst = arr fst >>> Hom y

for some function y. The expression on both sides evaluate to a Hom, so it suffices to show that the
functions inside Hom are equivalent.

In the inductive case, we assume first f >>> arr fst = arr fst >>> f. We would like to show
that first (Comp p e a) >>> arr fst = arr fst >>> Comp p e a under the following typing con-
text:
p :: x -> (a, c)

e :: e a b

a :: FreerArrow e (b, c) y

The expression on the left hand side of the equality evaluates to:
Comp (first p >>> assoc)

e

(lmap unassoc (first' a) >>> arr fst)

The expression on the right hand side of the equality evaluates to:
Comp (fst >>> p) e a

Normally, to show equality at this step, we want to establish that all the arguments on both
sides’ Comp are equal. However, that is not possible here because the types of these arguments
on both sides do not even match! The function argument on the left hand side of the equality
has type (x, w) -> (a, (c, w)) for some existential type w. The function argument on the right
hand side has type (x, w) -> (a, c). Correspondingly, the inner freer arrow on the left hand
side has type FreerArrow e (b, (c, w)) y. The inner freer arrow on the right hand side has type
FreerArrow e (b, c) y. At this point, we have to give up the proof.
Similarly, it is also impossible to prove the following law regarding FreerChoiceArrow and the

left method:
f >>> arr Left = arr Left >>> left f

Again, we try to prove this by induction on f:
In the base case, we need to prove that Hom y >>> arr Left = arr Left >>> left (Hom y). The

expression on both sides evaluate to a Hom, so it suffices to show that the functions inside Hom are
equivalent.

In the inductive case, we assume that f >>> arr Left = arr Left >>> left f. We want to show
that Comp p e x >>> arr Left = arr Left >>> left (Comp p e x) under the following typing con-
text:
p :: x -> Either (a, c) w

e :: e a b

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA, Article . Publication date: September 2025.
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Freer Arrows and Why You Need Them 15

a :: FreerChoiceArrow e (Either (b, c) w) y

The expression on the left hand side of the equality evaluates to:

Comp p e (f >>> arr Left)

The expression on the right hand side of the equality evaluates to:

Comp (Left >>> left p >>> assocsum)

a

(lmap unassocusum (left' a))

Unfortunately, we have again run into a case of type mismatch. The function argument on the
left hand side has type x -> Either (a, c) w. The function argument on the right hand side has
type x -> Either (a, c) (Either w w') for some existential type w'. Correspondingly, the inner
freer arrow on the left hand side has type FreerChoiceArrow e (Either (b, c) w) y. The inner
freer arrow on the right hand side has type FreerChoiceArrow e (Either (b, c) (Either w w')) y.
Again, we are at an impasse.

These failed proofs show that we need an equivalence relation that can deal with the discrepancy
of existential variables inside Comps. Our key observation, however, is that some of these existential
variables do not matter in the end. We discuss a novel equivalence relation for freer arrows and freer
choice arrows in the next two sections.

5.2 Equivalence for Freer Arrows
The equivalence relation between freer arrows should simultaneously capture two things: (1) the
equivalence of all the function arguments at every level “joined” together (the “semantic” part),
and (2) the similarity between freer arrow structures (the “syntactic” part). For (1), we propose a
dependently-typed characteristic function C(·) that represents recursively “joining” all the function
arguments in a freer arrow. For (2), we propose a similarity relation ∼ that only capture structural
similarity between freer arrows.

Characteristic functions. We show the typing rules and definitions of characteristic functions in
the top part of Fig. 7. A characteristic function is dependently typed, as its return type depends on
the value of its first argument, i.e., the freer arrow.

The typing rule HomType states that the characteristic type of Hom 𝑓 is the return type of 𝑓 . The
CompType rule is defined inductively: In the case of Comp 𝑓 𝑒 𝑦, the characteristic function “collects”
𝐴, the input type of 𝑒 , and constructs a function that takes 𝐵, the output type of 𝑒 , as input and
returns 𝑍 , the characteristic type of 𝑦. Note that the Comp constructor contains three existential
types represented by 𝐴, 𝐵, and 𝐶 in the typing rules, but only 𝐴 and 𝐵 appear in the characteristic
function type. This is because 𝐶 does not matter in the end: only 𝐴 and 𝐵 are directly related to the
effect 𝑒 and 𝐶 does not appear anywhere else. Ignoring 𝐶 is crucial for characteristic functions, as
this allows us to equate two freer arrows with existential types differ in 𝐶 .

Characteristic functions are defined recursively. In the base case Hom 𝑓 , the characteristic function
is just 𝑓 . In the case of Comp 𝑓 𝑒 𝑦, the characteristic function is the “join” of 𝑓 and C(𝑦), where
the “join” operation is formally defined by the Z operator. The Z operator takes two functions 𝑓
and 𝑔 of types (𝑋 → 𝐴 ×𝐶) and (𝐵 ×𝐶 → 𝑍 ), respectively. It constructs a new function of type
𝑋 → (𝐴 × (𝐵 → 𝑍 )) that, given an input 𝑥 of type 𝑋 , it collects the value of type 𝐴 produced by
applying 𝑓 to 𝑥 and a function of type 𝐵 → 𝑍 using 𝑔 and a value 𝑐 of type𝐶 produced by applying
𝑓 to 𝑥 . After using 𝑐 in the function application of 𝑔, it is never needed again, so its type disappears
from the return value of the characteristic function.
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Characteristic Function Type T (·):
Γ ⊢ f : 𝑋 → 𝑌

Γ ⊢ T (Hom 𝑓 ) = 𝑌
HomType

Γ ⊢ f : 𝑋 → 𝐴 ×𝐶 Γ ⊢ e : 𝐸 𝐴 𝐵

Γ ⊢ y : FreerArrow 𝐸 (𝐵 ×𝐶) 𝑌 Γ ⊢ T (𝑦) = 𝑍

Γ ⊢ T (Comp 𝑓 𝑒 𝑦) = 𝐴 × (𝐵 → 𝑍 )
CompType

Characteristic Function C(·):
C :: (𝑓 :: FreerArrow 𝐸 𝑋 𝑌 ) → 𝑋 → T (𝑓 )

C(Hom 𝑓 ) = 𝑓

C(Comp 𝑓 𝑒 𝑦) = 𝑓 Z C(𝑦)
where Z :: (𝑋 → 𝐴 ×𝐶) → (𝐵 ×𝐶 → 𝑍 ) → 𝑋 → (𝐴 × (𝐵 → 𝑍 ))

𝑓 Z 𝑔 = 𝜆 𝑥.let (𝑎, 𝑐) = 𝑓 𝑥 in (𝑎, 𝜆 𝑏.𝑔 (𝑏, 𝑐))
Similarity ∼ between FreerArrows:

Hom 𝑓 ∼ Hom 𝑔
HomSimilar

𝑥 ∼ 𝑦

Comp 𝑓 𝑒 𝑥 ∼ Comp 𝑔 𝑒 𝑦
CompSimilar

Equivalence ≈ between FreerArrows:

𝑥 ∼ 𝑦 C(𝑥) = C(𝑦)
𝑥 ≈ 𝑦

ArrowEq

Fig. 7. Characteristic functions, similarity ∼, and equivalence ≈ of FreerArrows.

Similarity. We show the similarity relation ∼ between freer arrows in Fig. 7. The HomSimilar
rule states that Hom 𝑓 and Hom 𝑔 are always similar regardless of the relation between 𝑓 and 𝑔. The
CompSimilar rule states that, if 𝑥 and 𝑦 are similar, Comp 𝑓 𝑒 𝑥 and Comp 𝑔 𝑒 𝑦 are similar. The rule
does not require any relations between 𝑓 and 𝑔, but it does require both Comps to have the same 𝑒 .
Intuitively, two freer arrows are similar as long as they share the same structure, i.e., same number
of Comps, and the same effects.
The similarity relation is heterogeneous, as it does not need both operands to share the same

type. However, we can prove the following lemma if both operands share the same type:

Lemma 5.1. If both operands share the same type, ∼ is an equivalence relation, i.e., it is reflexive,
symmetric, and transitive.

Proof. The proofs of reflexivity and symmetry are straightforward by induction. However, for
transitivity, we need to prove a more general theorem on operands that don’t share the same type:

∀(𝑎:: FreerArrow 𝑒 𝑥 𝑟 ) (𝑏:: FreerArrow 𝑒 𝑦 𝑟 ) (𝑐:: FreerArrow 𝑒 𝑧 𝑟 ), 𝑎 ∼ 𝑏 =⇒ 𝑏 ∼ 𝑐 =⇒ 𝑎 ∼ 𝑐.

This more general theorem can be proven by induction over 𝑥 ∼ 𝑦. It then implies the more
restrictive transitivity theorem we want. □

There is also an important relation between characteristic function types and similarity:
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Theorem 5.2. For all freer arrows 𝑥 and 𝑦, if 𝑥 ∼ 𝑦, then T (𝑥) = T (𝑦).

Proof. By induction over 𝑥 ∼ 𝑦. □

Equivalence. Finally, equivalence ≈ is defined in terms of characteristic functions and ∼, shown
in the bottom of Fig. 7. Note that we can directly compare C(𝑥) and C(𝑦) because 𝑥 ∼ 𝑦 implies
T (𝑥) = T (𝑦) by Theorem 5.2.

Lemma 5.3. ≈ is an equivalence relation, i.e., it is reflexive, symmetric, and transitive.

Proof. We can prove this by induction with the help of Lemma 5.1 and Theorem 5.2. □

Theorem 5.4 (Freer arrows are lawful arrows). The FreerArrow datatype satisfies all the
profunctor laws, pre-arrow laws, and arrow laws (Appendix A) with respect to ≈.

Proof. We can prove that all the profunctor laws and arrow laws except for three laws hold for
the stronger Leibniz equality. Therefore, we prove these laws using the Leibniz equality, which
implies ≈. All of these laws can be proven either directly by definition or by induction over a freer
arrow.

For the following three laws, we directly prove them under ≈:
first f >>> arr fst ≈ arr fst >>> f

first f >>> arr (id *** g) ≈ arr (id *** g) >>> first f

first (first f) >>> arr assoc ≈ arr assoc >>> first f

All these three laws can be proven by an induction over the freer arrow f. □

We formalize all these definitions, theorems, and proofs in Rocq Prover. Because the characteristic
function type T (𝑓 ) of a freer arrow 𝑓 depend on the structure of 𝑓 , we use dependent types in
formalizing characteristic functions. This makes it difficult to state the definitionArrowEq, because
we need to prove that C(𝑥) and C(𝑦) share the same type (i.e., T (𝑥) = T (𝑦)) before stating that
C(𝑥) = C(𝑦). The type equality can be proven by applying Theorem 5.2, but working with this
definition with type casting still requires significant proof engineering. Our Rocq proof assumes
the axiom of functional extensionality and the axiom of unicity of identity proofs. We also rely on
techniques about reasoning about equality proofs presented in Chlipala [2013]. More detail about
our Rocq formalization can be found in Appendix B and in our Rocq development.

5.3 Freer Choice Arrows
The idea of characteristic functions, ∼, and ≈ applies to freer choice arrows as well. However, we
need to overload the definition of characteristic functions and their types to accomondate the extra
capability of freer choice arrows. We show the overloaded definitions of T (·) and C(·) in Fig. 8. We
also need to overload ∼ and ≈ for freer choice arrows and to use the new characteristic functions,
but we omit these definitions here as they are almost the same as those of freer arrows.
We can prove lemmas similar to Lemma 5.1–5.3 for freer choice arrows as well, the proofs are

similar so we omit them here. These lemmas lead us to the following theorem:

Theorem 5.5 (Freer choice arrows are lawful choice arrows). The FreerChoiceArrow

datatype satisfies all the profunctor laws, pre-arrow laws, arrow laws, and choice arrow laws (Appen-
dix A) with respect to ≈.

Proof. Similar to the proof of Theorem 5.4, we can prove most laws using Leibniz equality. We
need ≈ for the following laws:
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Characteristic Function Types T (·):
Γ ⊢ f : 𝑋 → 𝑌

Γ ⊢ T (Hom 𝑓 ) = 𝑌
HomType

Γ ⊢ f : 𝑋 → 𝐴 ×𝐶 +𝑊 Γ ⊢ e : 𝐸 𝐴 𝐵

Γ ⊢ y : FreerChoiceArrow 𝐸 (𝐵 ×𝐶 +𝑊 ) 𝑌 Γ ⊢ T (𝑦) = 𝑍

Γ ⊢ T (Comp 𝑓 𝑒 𝑦) = 𝐴 × (𝐵 → 𝑍 ) + 𝑍
CompType

Characteristic Functions C(·):
C :: (𝑓 :: FreerChoiceArrow 𝐸 𝑋 𝑌 ) → 𝑋 → T (𝑓 )

C(Hom 𝑓 ) = 𝑓

C(Comp 𝑓 𝑒 𝑦) = 𝑓 Z C(𝑦)
where Z :: (𝑋 → 𝐴 ×𝐶 +𝑊 ) → (𝐵 ×𝐶 +𝑊 → 𝑍 ) → 𝑋 → (𝐴 × (𝐵 → 𝑍 ) + 𝑍 )

𝑓 Z 𝑔 = 𝜆 𝑥.case (𝑓 𝑥) of
Left (𝑎, 𝑐) ⇒ Left (𝑎, 𝜆 𝑏.𝑔 (Left (𝑏, 𝑐)))
Right𝑤 ⇒ Right (𝑔 (Right𝑤))

Fig. 8. Characterstic functions of FreerChoiceArrows.

first f >>> arr fst ≈ arr fst >>> f

first f >>> arr (id *** g) ≈ arr (id *** g) >>> first f

first (first f) >>> arr assoc ≈ arr assoc >>> first f

f >>> arr Left ≈ arr Left >>> left f

left f >>> arr (id +++ g) ≈ arr (id +++ g) >>> left f

left (left f) >>> arr assocsum ≈ arr assocsum >>> left f

The first three laws are the same laws that we prove for FreerArrows using ≈. The last three laws
are unique to choice arrows. All of these six laws can be proven by induction over the freer choice
arrow f. □

5.4 Bridged Freer Arrows
We do not define an equivalence relation for bridged freer arrows. Instead, we define the following
“translation” from bridged freer arrows to freer choice arrows:

translate :: BridgedFreerArrow e x y -> FreerChoiceArrow e x y

translate = B.interp F.embed

The B.interp function stands for the interp function in the module of briged freer arrows. The
F.embed function stands for the embed function in the module of freer choice arrows.

We can then use the equivalence relation of freer choice arrows to equate bridged freer arrows.

6 CASE STUDY: THE STATE ARROW
In this section, we use a simple state arrow to demonstrate the usefulness of freer arrows. We will
describe a larger case study in the next section.

We define a typeclass ArrowState that describes arrows that include a state effect (similar to the
MonadState in Haskell’s mtl library [Jones 1995]):
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class Arrow a => ArrowState s a where

get :: a b s

put :: a s s

For convenience, the get operation has an input type b which allows it to consume any input, and
put outputs the value written so that it can be further used.
We can define a type of effects StateEff which describes the same operations:

-- |- An ADT for stateful effect.

data StateEff :: Type -> Type -> Type -> Type where

Get :: StateEff s a s

Put :: StateEff s s s

We can then declare a freer arrow as an ArrowState as follows:
-- |- A freer arrow is an ArrowState.

instance ArrowState s (FreerArrow (StateEff s)) where

get = embed Get

put = embed Put

handleState :: ArrowState s a => StateEff s x y -> a x y

handleState Get = get

handleState Put = put

Similarly, we can show that freer choice arrows are an instance of ArrowState as well.
Effects are composable. Here, we only show freer arrows with state effects for simplicity, but

it is possible to define methods for freer arrows with any effects as long as the effects include
state effects. The method for defining composable effects is well-studied in existing literatures on
algebraic effects and effect handlers, etc., so we defer the detailed implementation based on these
literatures to Appendix C.

Examples. We can now use the ArrowState interface to define a freer arrow. For example, the
following function inc n starts from an initial number and keeps increasing the state for n times:
inc :: Int -> FreerArrow (StateEff Int) Int Int

inc n | n > 0 = get >>> lmap (+1) put >>> inc (n - 1)

| otherwise = get

We can then either interpret the freer arrow to a state arrow, or an IO arrow, or we can do some
static analysis on the freer arrow, e.g., count the number of gets and puts.
The inc example shows that we can write programs using the ArrowState interface and freer

arrows to define recursions where the depth of recursion is statically known. What if we want to
write programs with loops where the number of iterations is not statically known?

While freer arrows are not typically for this type of tasks, we can combine freer arrows with some
iteration combinators to implement this. For example, we show an Elgot datatype that represents
the Elgot iteration [Adámek et al. 2011; Goncharov 2022] in Fig. 9. Elgot takes three parameters
e :: Type -> Type -> Type, x :: Type, and y :: Type. It has only one constructor Elgot that takes
a “loop body” of type f e x (Either z x) and a continuation of type f e z y. The intuition is that
if the loop body returns a value of type x, the loop body will be executed again. Otherwise, we end
the loop and run the continuation instead. The logic is also reflected by the interpmethod of Elgot.

With the Elgot datatype, we can define a countdown function using freer choice arrows:
countA :: Elgot FreerChoiceArrow (StateEff Int) Int Int

countA =
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data Elgot f (e :: Type -> Type -> Type) x y where

Elgot :: f e x (Either z x) -> f e z y -> Elgot f e x y

interp :: ArrowChoice arr =>

(f e :-> arr) -> Elgot f e x y -> arr x y

interp h (Elgot l k) =

let go = h l >>> h k ||| go in go

Fig. 9. A datatype representing the Elgot iteration [Adámek et al. 2011; Goncharov 2022].

class Arrow a => ArrowMapState k v a where

getM :: a k v

putM :: a (k, v) v

class Arrow a => ArrowIndexedMapState k v a where

getIM :: k -> a b v

putIM :: k -> a v v

-- |- An ADT for stateful effect.

data MapStateEff :: Type -> Type -> Type -> Type -> Type where

GetM :: MapStateEff k v k v

PutM :: MapStateEff k v (k, v) v

data IndexedMapStateEff :: Type -> Type -> Type -> Type -> Type where

GetIM :: k -> IndexedMapStateEff k v a v

PutIM :: k -> IndexedMapStateEff k v v v

instance ArrowMapState k v (FreerArrow (MapStateEff k v)) where

getM = embed GetM

putM = embed PutM

instance ArrowIndexedMapState k v (FreerArrow (IndexedMapStateEff k v)) where

getIM k = embed $ GetIM k

putIM k = embed $ PutIM k

Fig. 10. Two arrow interfaces for a simple key-value store.

let go = get >>> arr (\n -> if n == 0 then Left n else Right n) >>>

right (lmap (\x -> x - 1) put) in

Elgot go id

A simple key-value store. We can extend the state arrow to a simple key-value store. There are
two ways we can do this with arrows: keys can be passed as an input to the event in the arrow or
as a functional parameter to an event. Therefore, we get two different key-value store interfaces,
shown as ArrowMapState and ArrowIndexedMapState in Fig. 10.
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putput :: Eq k => FreerArrow (IndexedMapStateEff k v) a b ->

FreerArrow (IndexedMapStateEff k v) a b

putput (Comp f (PutIM k1) (Comp IdBridge (PutIM k2) c))

| k1 == k2 = Comp f (PutIM k1) c

-- otherwise, fall through; writes to different keys still need to happen

putput (Comp f e c) = Comp f e $ putput c

putput x = x

Fig. 11. A simple optimization that can be performed the bridged freer arrow version of the key-value store.
More optimizations can be found in Appendix D.

A bridged freer arrow with IndexedMapStateEff can be used to implement some optimizations
following algebraic properties of a key-value map. We show one in Fig. 11 and defer the rest of them
to Appendix D. These optimizations are given as an example and are very narrow. For example
they don’t traverse through FirstBridge or LeftBridge to find places to optimize.

Unfortunately, it is less obvious how to define these for MapStateEff where the key is data in the
arrow. The bridges we have are not sufficient for detecting when the same key is used twice.

7 CASE STUDY: CHOREOGRAPHIC PROGRAMMING
HasChor [Shen et al. 2023] is a library for choreographic programming which uses freer monads to
encode programs that run choreographically on multiple physical or logical machines, or endpoints.
A key feature of HasChor is that you only need write the program once and have the code distributed
to all the endpoints. Thanks to freer monads, a user can re-use all existing advanced features from
the host language, Haskell, including higher-order functions, type systems, etc. In this section, we
present HasChorA, a larger case study that adapts HasChor to use freer arrows instead. We also
work out an example of the Diffie-Hellman key exchange protocol included with the HasChor
library.
When using HasChorA, a user first writes the single choreography (i.e., the program to be

distributed among multiple endpoints) using freer choice arrows and the following effect datatype:

data ChoreoSig ar b a where

Local :: KnownSymbol l => Proxy l -> ar b a ->

ChoreoSig ar (b @ l) (a @ l)

Comm :: (Show a, Read a, KnownSymbol l, KnownSymbol l') =>

Proxy l -> Proxy l' ->

ChoreoSig ar (a @ l) (a @ l')

Cond :: (Show a, Read a, KnownSymbol l) =>

Proxy l -> Choreo ar a (Either b c) ->

ChoreoSig ar (a @ l) (Either b c)

type Choreo ar = FreerChoiceArrow (ChoreoSig ar)

These definitions use a special datatype called locations that indicate at which endpoint the data
is. Events in the Choreo arrows are Local, for computations that run locally at one location (the
locations between the input and output are the same); Comm, for sending a value located at one
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location to another (the locations between the input and output differ); and Cond, for conditionally
choosing what to do next based on a located value.
The choregrahphy can then be projected into different endpoints. At each endpoint, a set of

network effects that only specifies what this particular endpoint does is used. For example, a Comm

effect may become a “send” if the endpoint’s location matches the input’s location, or a “receive”,
if it matches the output’s location, or simply discarded, if it matches no location. These network
effects in HasChorA are defined as follows:

data NetworkSig ar b a where

Run :: ar b a -> NetworkSig ar b a -- Local computation.

Send :: Show a => LocTm -> NetworkSig ar a () -- Sending.

Recv :: Read a => LocTm -> NetworkSig ar () a -- Receiving.

BCast :: Show a => NetworkSig ar a () -- Broadcasting.

type Network ar = FreerChoiceArrow (NetworkSig ar)

Static analysis (e.g., counting the number of Send and Recv operations) and optimizations (e.g., com-
bining sequential Comm or Send/Recv events) may be performed on the program. It would be difficult
or infeasible to do with the original freer monad version without metaprogramming. For example,
we can count the number of each kind of Send and Recv events in the Network arrow using the
following function:

count_send_recv :: Network ar a b -> (Integer, Integer)

count_send_recv (Comp _ e k) =

let (s, r) = count_send_recv k in

case e of

Send _ -> (s + 1, r)

Recv _ -> (s, r + 1)

_ -> (s, r)

count_send_recv (Hom _) = (0, 0)

8 RELATEDWORK
Arrows. Hughes [2000] initially proposes arrows as a generalization of monads. However, the

relation among monads, applicative functors (also known as idioms at that time) [McBride and
Paterson 2008], and arrows were unknown at that time. It was only later shown by Lindley et al.
[2008] that arrows are between applicative functors and monads in terms of the expressiveness.
Similar to monads, a do-notation for arrows can also be used in writing arrows, instead of using
primitive methods like first and left [Paterson 2001, 2003].
Arrows have been commonly used in domains like functional reactive programming [Chupin

and Nilsson 2019; Hudak et al. 2003; Keating and Gale 2024; Perez et al. 2016]. For example, Hudak
et al. [2003] show that arrows are useful for encoding behaviors in robots that combine continuous
and discrete parts, such as integration or derivation of sensor signals and changing between finite
program states. Chupin and Nilsson [2019] propose the concept of routers that defunctionalizes the
connections between arrows, which are direct inspirations of our bridged version of freer arrows.
However, the use of our bridges are narrower than their routers because we would like to keep
bridges as simple as possible. In the future, we would like to explore with routers more extensively
to study optimizing freer arrows.

In other domains, Carette et al. [2024] use arrows to represent quantum computations as classical
computations. Notably, in this computation model, the underlying classical language is restricted to
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reversible functions, unlike the unrestricted pure functions in the Haskell version. This brings up
an interesting question about one of the defining arrow operators arr, which normally lifts a “pure”
function into the arrow. We leave it to future work to consider what notions of pure functions can
be lifted into an arrow, and whether it generalizes to, for example, any underlying category or
profunctor.

Free structures. We discussed freer monads and their usefulness in Section 1. Other freer struc-
tures have also been studied. For example, Capriotti and Kaposi [2014] propose a version of freer
applicative functors and show that they can be statically analyzed. Mokhov et al. [2019] propose
freer selective applicative functors, which have been used by Willis et al. [2020] to implement
efficient staged parser combinators. Rivas and Jaskelioff [2017] study various free strutures, includ-
ing free monads, free applicative functors, and free arrows. By applying the techniques used by
Kiselyov and Ishii [2015] to derive freer monads, we can derive freer versions of these structures—in
fact, we initially derive our versions of freer arrows in this way.
Free structures enable a mixed embedding that has both semantics parts and syntactic parts in

the same data structure. This use case of free structures has been studied by various works [Chlipala
2021; Gibbons and Wu 2014; Korkut et al. 2025; Li and Weirich 2022].

Algebraic effects with arrows. More recently, Sanada [2024] describes a semantics for writing and
interpreting effect handlers using arrows. This is parallel to our work, because it involves defining a
language with a structure for writing user-defined effect handlers in that language. Our work does
not involve a bespoke language with effects, but rather describes a definition within an existing
language (Haskell) for freer arrows, along with tooling to use it for extensible effects.

9 CONCLUSION AND FUTUREWORK
In this paper, we define and study the four variants of freer arrows: freer pre-arrows, freer arrows,
freer choice arrows, and bridged freer arrows. We develop a novel equivalence relation to show
that these freer arrows are lawful. The equivalence relation is based on a characteristic function
that capture the semantic parts of freer arrows, and a similarity relation that capture the syntactic
parts of freer arrows. These freer arrows are amenable to static analysis. In particular, we can
count the exact number of effect occurances in freer pre-arrows and freer arrows; we can get
an over-approximation in freer choice arrows; we can get both an under-approximation and an
over-approximation in bridged freer arrows. We conducted case studies of freer arrows based on
a simple key/value store and a choreographic programming library HasChor. These case studies
show that freer arrows are expressive to be used in practice.
In the future, we would like to look into more complex optimizations based on freer arrows.

One challenge with such optimizations is that the function components in freer arrows are hard
to analyze. One possibility is defunctionalize commonly used “routing” functions, similar to the
approach of Chupin and Nilsson [2019]. We would also like to apply arrows to other libraries that
make use of static structures, such as Haxl [Marlow et al. 2014] and build systems [Mokhov et al.
2020].

DATA-AVAILABILITY STATEMENT
We include all the Haskell and Rocq Prover development for this paper, including the definitions of
variants of freer arrows, case studies, and formal proofs, in the supplementary materials of this
submission. We intend to submit all the code (with more comprehensive and clear comments and
instructions) as a publicly-available artifact during artifact evaluation.
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A APPENDIX: ARROW LAWS

-- Profunctor laws

dimap (f . g) (h . i) ≈ dimap g h . dimap f i

lmap (f . g) ≈ lmap g . lmap f

rmap (f . g) ≈ rmap f . rmap g

-- Category laws

id >>> f ≈ f

f >>> id ≈ f

(f >>> g) >>> h ≈ f >>> (g >>> h)

-- Pre-Arrow laws

arr id ≈ id

arr (f >>> g) ≈ arr f >>> arr g

-- Arrow laws

first (arr f) ≈ arr (first f)

first (f >>> g) ≈ first f >>> first g

first f >>> arr fst ≈ arr fst >>> f

first f >>> arr (id *** g) ≈ arr (id *** g) >>> first f

first (first f) >>> arr assoc ≈ arr assoc >>> first f

-- Choice arrow laws

left (arr f) ≈ arr (left f)

left (f >>> g) ≈ left f >>> left g

f >>> arr Left ≈ arr Left >>> left f

left f >>> arr (id +++ g) ≈ arr (id +++ g) >>> left f

left (left f) >>> arr assocsum ≈ arr assocsum >>> left f

-- Definition of [assoc] (used in the last arrow law)

assoc ((a,b),c) = (a,(b,c))

unassoc (a,(b,c)) = ((a,b),c)
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-- Definition of [assocsum] (used in the last choice arrow law)

assocsum (Left (Left x)) = Left x

assocsum (Left (Right y)) = Right (Left y)

assocsum (Right z) = Right (Right z)

unassocsum (Left x) = Left $ Left x

unassocsum (Right (Left y)) = Left $ Right y

unassocsum (Right (Right z)) = Right z

B APPENDIX: ROCQ PROVER FORMALIZATION OF FREER ARROW EQUIVALENCE

Fixpoint CharacteristicType {E : Type -> Type -> Type} {X Y : Type}

(e : FreerArrow E X Y) : Type :=

match e with

| Hom _ => Y

| @Comp _ _ _ A B C f e y => A * (B -> CharacteristicType y)

end.

Fixpoint character {E : Type -> Type -> Type} {X Y : Type}

(e : FreerArrow E X Y) : X -> CharacteristicType e :=

match e with

| Hom f => f

| Comp f _ y => join f (character y)

end.

Inductive ArrowSimilar {E X Y P} :

FreerArrow E X Y -> FreerArrow E P Y -> Prop :=

| HomSimilar : forall f g, ArrowSimilar (Hom f) (Hom g)

| CompSimilar : forall A B C D x y

(f : X -> A * C) (g : P -> A * D) (e : E A B),

ArrowSimilar x y ->

ArrowSimilar (Comp f e x) (Comp g e y).

Theorem ArrowSimilarCharTypEq {E X Y P} :

forall (x : FreerArrow E X Y) (y : FreerArrow E P Y),

ArrowSimilar x y ->

CharacteristicType x = CharacteristicType y.

Proof. (* Omitted *) Qed.

Variant ArrowEq {E X Y} : FreerArrow E X Y -> FreerArrow E X Y -> Prop :=

| ArrowEqSimilar : forall x y (H : ArrowSimilar x y),

(** This is essentially [character x = character y]. We need this stated in

this awkward way to convince Rocq that [character x] and [character y] share

the same type, so we can use equality on them. *)

(let H0 := ArrowSimilarCharTypEq x y H in

let cx := eq_rect _ (fun T : Type => X -> T) (character x) _ H0 in

cx = character y) ->

x ≈ y
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where "x ≈ y" := (ArrowEq x y).

C APPENDIX: COMPOSABLE EFFECTS

-- |- The [Sum2] datatype.

data Sum2 (l :: Type -> Type -> Type) (r :: Type -> Type -> Type) a b where

Inl2 :: l a b -> Sum2 l r a b

Inr2 :: r a b -> Sum2 l r a b

-- |- An injection relation between effects.

class Inj2 (a :: Type -> Type -> Type) (b :: Type -> Type -> Type) where

inj2 :: a x y -> b x y

-- |- Automatic inference using typeclass resolution.

instance Inj2 l l where

inj2 = id

instance Inj2 l (Sum2 l r) where

inj2 = Inl2

instance Inj2 r r' => Inj2 r (Sum2 l r') where

inj2 = Inr2 . inj2

-- |- A more generalized instance showing that freer arrows are an ArrowState.

instance Inj2 (StateEff s) e => ArrowState s (FreerArrow e) where

get = embed $ inj2 Get

put = embed $ inj2 Put

D APPENDIX: SIMPLE OPTIMIZATIONS BASED ON BRIDGED FREER ARROWS

getget :: FreerArrow (IndexedMapStateEff k v) a b ->

FreerArrow (IndexedMapStateEff k v) a b

getget (Comp _ (GetIM _) (Comp IdBridge (GetIM k2) c)) = Comp IdBridge (GetIM k2) c

getget (Comp f e c) = Comp f e $ getget c

getget x = x

getput :: Eq k => FreerArrow (IndexedMapStateEff k v) a b ->

FreerArrow (IndexedMapStateEff k v) a b

getput (Comp _ (GetIM k) (Comp IdBridge (PutIM k') c))

| k == k' = Comp IdBridge (GetIM k) c

getput (Comp f e c) = Comp f e $ getput c

getput x = x

putget :: Eq k => FreerArrow (IndexedMapStateEff k v) a b ->

FreerArrow (IndexedMapStateEff k v) a b

-- Note the use of IdBridge here; we can't have an arbitrary bridge on the left

putget (Comp IdBridge (PutIM k) (Comp IdBridge (GetIM k') c))

| k == k' = Comp IdBridge (PutIM k) c
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putget (Comp f e c) = Comp f e $ putget c

putget x = x

putput :: Eq k => FreerArrow (IndexedMapStateEff k v) a b ->

FreerArrow (IndexedMapStateEff k v) a b

putput (Comp f (PutIM k1) (Comp IdBridge (PutIM k2) c))

| k1 == k2 = Comp f (PutIM k1) c

-- otherwise, fall through; writes to different keys still need to happen

putput (Comp f e c) = Comp f e $ putput c

putput x = x
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