A Case Study on the Effectiveness of LLMs in
Verification with Proof Assistants

Baris Bayazit
baris@cs.toronto.edu
University of Toronto

Toronto, Ontario, Canada

Abstract

Large language models (LLMs) can potentially help with ver-
ification using proof assistants by automating proofs. How-
ever, it is unclear how effective LLMs are in this task. In this
paper, we perform a case study based on two mature Rocq
projects: the hs-to-coq tool and Verdi. We evaluate the effec-
tiveness of LLMs in generating proofs by both quantitative
and qualitative analysis. Our study finds that: (1) external
dependencies and context in the same source file can sig-
nificantly help proof generation; (2) LLMs perform great on
small proofs but can also generate large proofs; (3) LLMs
perform differently on different verification projects; and
(4) LLMs can generate concise and smart proofs, apply clas-
sical techniques to new definitions, but can also make odd
mistakes.

ACM Reference Format:

Baris Bayazit, Yao Li, and Xujie Si. 2025. A Case Study on the Effec-
tiveness of LLMs in Verification with Proof Assistants. In Proceed-
ings of International Workshop on Language Models and Program-
ming Languages (LMPL’25). ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3759425.3763391

1 Introduction

Software should be correct. But in reality, that’s rarely true.

Proof assistants allow us to formally verify that a class of
bugs is absent in a program via mechanized mathematical
proofs. In the past two decades, various works have demon-
strated that this approach is a feasible way to ensure software
correctness and reliability. Some notable verified software
includes the CompCert C compiler [45], the seL4 microker-
nel [42], the CertiKOS operating system [30], the FSCQ file
system [12], etc. Many new tools and frameworks that sup-
port mechanized reasoning have also emerged, including
program logics and frameworks for reasoning about con-
currency [10, 40, 59, 79], nonterminating programs [75, 89],
nondeterminism [11, 17, 60], etc.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

LMPL’25, Singapore

© 2025 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-X/YYYY/MM
https://doi.org/10.1145/3759425.3763391

Yao Li
liyao@pdx.edu
Portland State University
Portland, Oregon, USA

Xujie Si
six@cs.toronto.edu
University of Toronto
Toronto, Ontario, Canada

However, despite all these efforts, proving the correct-
ness theorems of a program in a proof assistant remains a
daunting task. For example, Breitner et al. [9]’s work on ver-
ifying Haskell’s containers library using hs-to-coq shows
that their verification work “required 8.9 lines of proof per
lines of code” [9, Section 3]. This is a significant overhead in
addition to code development. Future changes to the code
or the specification bring even greater challenges for proof
maintenance and proof repair [28, 70, 71].

Large Language Models, or LLMs, on the other hand, have
received great attention for their capability in performing
a wide range of tasks. In particular, existing works have
demonstrated LLMs’ effectiveness in generating code [38]
and mathematical proofs [2, 46, 83].

It is natural to ask: Can LLMs help with verification using
proof assistants?

Indeed, researchers have recently started investigating
this question, and various new tools/frameworks for gen-
erating program correctness proofs with the help of LLMs
have also emerged [25, 44, 51, 67]. However, due to the mys-
terious nature of LLMs [100, 102], many questions remain
unanswered.

In this paper, we build on prior works and try to under-
stand more about the effectiveness of LLMs in verification
with proof assistants, by conducting a case study on two
different verification projects that use Rocq Prover [81]: the
hs-to-coq tool [9, 78] and Verdi [86, 87].

Our case study investigates the following research ques-
tions:

e RQ1: How do external dependencies and/or context
in the same source file impact proof generation for a
theorem?

e RQ2: How do LLMs perform on proofs of different
sizes?

e ROQ3: Is there a difference when running LLMs on
different verification projects?

e RQ4: How is the quality of proofs generated by LLMs?

To answer these questions, we conduct a quantitative
study for RQ1, RQ2, and RQ3, and a qualitative study for
RQ4. Our case study shows:

e Including either external dependencies or context in
the same source file, or both, can significantly improve
the effectiveness of LLMs in generating proofs.

https://orcid.org/0009-0001-1094-1563
https://orcid.org/0000-0001-8720-883X
https://orcid.org/0000-0002-3739-2269
https://doi.org/10.1145/3759425.3763391
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759425.3763391

LMPL’25, October 2025, Singapore

e LLMs perform significantly better on proofs of smaller
sizes. However, there is still a chance for LLMs to gen-
erate proofs consisting of more than 20 tactics.

e LLMs perform differently in the two projects we stud-
ied. For example, LLMs are less likely to generate

proofs that are identical to original proofs in hs-to-coq.

Context in the same source file also plays a more sig-
nificant role in generating proofs for Verdi.

o LLMs can generate concise and smart proofs. They can
also apply classical techniques such as performing a
case analysis on an inductively defined proposition. On
the other hand, LLMs can also generate odd, apparently
failed proofs that repeat a tactic seemingly indefinitely.

In the rest of this paper, we first introduce some necessary
background about Rocq Prover and program verification
in Section 2. We then discuss our target codebase, namely,
hs-to-coq and Verdi, in Section 3. We describe our method-
ology in Section 4. We share and interpret our results (both
quantitative and qualitative ones) in Section 5. We discuss
related works in Section 6. Finally, we conclude with Sec-
tion 7.

2 Background

In this section, we introduce the necessary background knowl-
edge to understand this paper. Readers who are familiar with
these concepts should feel free to skip the relevant parts.

Rocq Prover. Some commonly used proof assistants in-
clude Rocq Prover [81], Agda [1], Lean [16], Fx [80], and
Isabelle [58], etc. In this paper, we focus on Rocq Prover.
Rocq Prover is formerly known as the Coq proof assistant’
and is one of the most commonly used proof assistants for
program verification. Rocq Prover has an expressive specifi-
cation language and supports full dependent types, which
enables describing the properties of a software system in
rich detail.

We illustrate the process of theorem proving in Rocq
Prover in Fig. 1. We first state a theorem in Rocq Prover
using its specification language. For example, line 1 of Fig. 1a
is equivalent to the mathematical proposition:

YVneN,n+0=n

where N is the set of all natural numbers.

We can then write a proof script that instructs the proof as-
sistant to prove this theorem, as shown in lines 2-7. However,
in Rocq Prover, we typically do not directly write the entire
proof script. Instead, we enter an interactive proof mode.
This step is typically marked by the Proof keyword (line 2).

When we enter the proof mode, Rocq prover will display
the current context and the proof goal as shown in Fig. 1b.
The context, which is empty at this point, consists of all

IThe name change starts in Rocq Prover version 9.0. However, we will
address all versions of Rocq Prover, including those before this name change,
as Rocq Prover to avoid confusion.

Baris Bayazit, Yao Li, and Xujie Si

1 Theorem add_0_r : forall n:nat, n + @ = n.
2 Proof.

3 induction n as [| n' IHn'].

4 - (*n =0 %) reflexivity.

5 - (*n=5Sn" %) simpl. rewrite -> IHn'.
6 reflexivity.

7 Qed.

(a) A Rocq theorem about natural numbers and its proof. The
example comes from Logical Foundations, a classical textbook
on Rocq Prover [66].

forall n : nat, n + @ =n

(b) The context and the proof goal when we enter the proof
mode (i.e., right after invoking line 2).

(c) The context and the proof goal after we invoke the
induction tactic (i.e., after line 3). This is the first goal, i.e., the
base case.

: nat

(d) The context and the proof goal after we proved the base
case (i.e., after line 4). This is the induction step.

: nat

(e) The context and the proof goal after the rewrite tac-
tic (i.e., after line 5).

Figure 1. The process of proving a theorem in Rocq Prover.

the current hypotheses. The proof goal is what we need to
show to finish the proof. We can manipulate the context
and the proof goal using tactics, which are instructions to
Rocq Prover about how to proceed with the proof. In this
case, we decide to do an induction over n, indicated by the
tactic induction n (line 3 in Fig. 1a). Our tactic also names
some new variables via an intro pattern[| n' IHn' J—these
names will show up later in the proof process.

After invoking the induction tactic, our proof goal will
become two subgoals: one for the base case and one for the
induction step. Rocq Prover will first ask us to prove the base
case. We show the context and the goal of the base case in
Fig. 1c. We can see that the context is still empty, but the goal
has been changed to prove that 0 + 0 = 0. Rocq Prover can

A Case Study on the Effectiveness of LLMs in Verification with Proof Assistants

tell that 0+ 0 computes to 0, so proving the goal is equivalent
to proving that 0 = 0. Rocq Prover knows that = is reflexive,
so we can discharge this goal via the reflexivity tactic.
Once we are done with the base case, Rocq Prover will
ask us to prove the induction step. We show the context
and the goal of the induction step in Fig. 1d. This time, the
context contains a variable n' that has type nat and an in-
duction hypothesis IHn' that statesn' + @ = n'. The names
n' and IHn' come from the intro pattern in our induction
tactic earlier. Our goal has also been changed to show that
Sn' +0 =S n',where S n' means the successor of n'.
InRocg,S n' + @isrecursively definedassS (n' + 0). We
can reveal this via the simpl tactic. After that, we recognize
that n' + @ equals n' by the induction hypothesis IHn', so
we can rewrite using IHn'. The rewrite changes the goal to
Fig. 1e, which can again be solved by the reflexivity tactic.
Finally, we can write a Qed at the end of the proof (line 7
in Fig. 1a). Qed is more than an end mark of a proof in Rocq
Prover: it checks that the proof constructed by our proof
script is indeed a correct proof of the theorem. Rocq Prover
has a small trusted computing base for proof checking. This
means that a proof checked by Qed is highly trustworthy.

Program Verification with Rocq Prover. We can verify
properties of a program in the same way in Rocq Prover. If
the program has already existed but was written in another
language, we need to first embed the syntax and/or semantics
of that program in Rocq Prover [8]. Alternatively, we can also
write a program directly in Rocq, prove properties about it,
and then extract it to another language like OCaml or C. Our
evaluation includes examples in both approaches (Section 3).

There have been various verification works based on Rocq
Prover, including compilers [45, 96], operating systems [30],
file systems [12], networked servers [43, 97], cryptographic
algorithm implementations [22], etc. There are also vari-
ous tools/frameworks supporting program verification with
Rocq Prover, including Verified Software Toolchains [3],
Iris [40, 79], certified abstraction layers [29, 31], mathemat-
ical components [52], and interaction trees [89, 95], etc. A
more detailed account of Rocq Prover’s ecosystem can be
found in Appel [4].

3 Codebase for Evaluation

We chose two open-source Rocq Prover projects as the eval-
uation target: (1) the theory for Haskell’s base library con-
tained in the hs-to-coq project [9, 77, 78], and (2) the Verdi
project for implementing and verifying distributed systems
(86, 87].

We chose these two projects for the following reasons:

First, these two projects represent the two most typical
ways to represent programs: functions and inductively de-
fined relations. Programs in the hs-to-coq codebase are
all purely functional programs, so they are simply defined

LMPL’25, October 2025, Singapore

take :: Int > [a] -> [a]
take n _ | n<=0= T[]
take _ [] = []

take n (x:xs) x : take (n-1) xs

(a) The take function defined in Haskell’s base library.
Fixpoint take {a:Type} (n:Z) (xs:list a) :
list a :=
if (n <=? @)%Z then nil
else match xs with

| nil => nil
| cons y ys => cons y (take (n - 1) ys)
end.

(b) The take function converted to Rocq by hs-to-coq.
The Fixpoint keyword marks the definition of a recur-
sive function. Haskell’s types, such as Int and lists [],
are translated to Rocq types Z and list.

Figure 2. The take function defined in Haskell’s base library
and its translation in Rocq Prover produced by hs-to-coq.

as Rocq functions.? The Verdi project, on the other hand,
reasons about traces and transition systems encoded by in-
ductively defined propositions.

Second, these two projects have proper sizes for an ini-
tial investigation of LLMs’ effectiveness in verification. On
the one hand, they are no toy projects. The theory of base
in hs-to-coq contains 187 proofs, and Verdi contains 579
proofs. On the other hand, these projects are not too large.

Finally, none of these projects involve advanced program

logics (e.g., separation logic [69], concurrent separation logic [10,

59]) or frameworks (e.g., certified abstraction layers [29, 31],
interaction trees [89, 95]). The absence of these advanced
reasoning tools helps keep the experiments pristine.

We now talk about each project and the part we evaluate
in more detail.

3.1 The hs-to-coq Project

The hs-to-coq tool translates purely functional programs
in Haskell to a shallow embedding in Rocq Prover. Its open-
source repository contains translated code from Haskell’s
base library, containers library, parts of the GHC compiler,
and many other examples of different sizes. We show an
example of the original Haskell code and the translated Rocq
code in Fig. 2. More details on how such a translation works
can be found in Spector-Zabusky et al. [78].

Our case study is based on the translated Rocq code, and
theorems stated and proven by the hs-to-coq developers.
Once a piece of Haskell code is translated using hs-to-coq,

>They should be called Gallina functions, to be more precise. Gallina is
the specification language of Rocq Prover. However, we will not try to
intentionally distinguish Gallina and Rocq in this paper.

LMPL’25, October 2025, Singapore

Class EgLaws (t : Type) “{Eq_ t} :

{ Eq_refl : reflexive _==_;

Eq_sym : symmetric _==_;

Eq_trans : transitive _==_;

Eg_inv : forall xy : t, x ==y =~~~ (x /=y)
}.

Class EgExact (t :
{ Eq_eq :

Type) ~{EqLaws t} :

forall x y : t, reflect (x =y) (x ==y) }.

Figure 3. Laws for the Eq typeclass stated in Rocq Prover in
hs-to-coq.

we can treat the translated code as regular Rocq code, so
our evaluation does not rely on the hs-to-coq tool or any
Haskell code.

Our case study focuses on the theory of the base library.
The base library contains a number of basic Haskell types,
functions, typeclasses, and typeclass instances. The theory of
base contains theorems for these basic types and functions,
and theorems for typeclass laws.

Typeclasses are a way to implement overloading (i.e., ad-
hoc polymorphisms) in functional languages, including both
Haskell and Rocq Prover [34, 76, 85]. A few examples of type-
classes implemented in the base library include: Eq for equal-
ity tests, ord for total orders, Semigroup for concatenation,
Foldable for “congregating” a data structure, and abstract in-
terfaces like Functor, Applicative [53], and Monad [55, 84], etc.

Instances of these typeclasses are expected to satisfy cer-
tain laws. For example, an implementation of equality tests
== in Eq should be reflexive, transitive, and symmetric; the
<= operator in 0rd should be reflexive, transitive, and anti-
symetric; a Monad should satisfy monad laws [55, 84]. The
documentation of the base library describes these laws in
details.

We show an example of how hs-to-coq’s theory of base
states laws for the Eq typeclass in Fig. 3. These laws are
themselves defined as typeclasses in Rocq Prover. Eq_refl,
Eq_sym, and Eq_trans state that == is reflexive, symmetric,
and transitive, respectively. In hs-to-coq, _==_ represents
the equality test function, and == is a notation that can be
used as an infix operator. Eq_inv states that == and /= are
inverse of each other. Finally, EqExact contains a special law
that states == always agrees with Rocq’s builtin equality
=. The reflect definition is an interesting definition that
enables a classical technique in mechanized reasoning called
proof by reflection. We will see an example of LLMs using
this later in Section 5.

We choose the theory of base because it contains a fair
amount of theorems, and the proofs in general are neither
too simple nor too complicated. The longest proof script
involves 43 tactics.

Baris Bayazit, Yao Li, and Xujie Si

Other theories, such as theories for containers, graph, or
the GHC compiler, contain much more complicated proofs.
For example, the theorem insertBM_Desc is about the prop-
erty of the insertBM function of container’s IntSet data
structure.® The handcrafted proof of this theorem is 42 lines
of proof script, makes heavy use of proven lemmas, uses
custom tactics, uses Ltac’s match clause for pattern match-
ing certain goals to solve them automatically, involves both
backward reasoning and forward reasoning using assert.
We leave the investigation of these examples to future work.

The hs-to-coq project relies on Rocq Prover 8.10, which
is an old version first released in April 2019. Unfortunately,
most of its code no longer works under later versions of
Rocq Prover because Rocq Prover does not support backward
compatibility. For this reason, we conduct our study on Rocq
Prover 8.10 as well. This should not impact the validity of this
research, as the key workflow and features of Rocq Prover
remain the same across these versions.

3.2 Verdi

Verdi is a framework for implementing and verifying dis-
tributed systems in Rocq Prover. Instead of writing a program
in a different language and embedding it in Rocq Prover, a
programmer first implements their distributed systems in
Rocq Prover and extract the code to OCaml. Unlike purely
functional programs in Haskell’s base library, distributed
systems always contain a number of effects and interact
with a network that can reorder or even drop messages. To
model this, Verdi defines a special monad for implementing
distributed systems and transition systems for network se-
mantics. More details about how Verdi works can be found
in Wilcox et al. [86], Woos et al. [87].

The Verdi framework has been used in various works to
study the effectiveness of Al in verification. For example,
it is included as part of the CoqGym benchmark [92] and
has been studied by First and Brun [23], First et al. [24]. In
particular, Lu et al. [51] tried applying GPT-3.5* to proofs in
Verdi. They found that LLMs like GPT-3.5 are ineffective in
finishing most of the proofs, as they collected 520 errors out
of 579 theorems. They further analyzed all the errors and
made the following observation [51, Section 3]:

...while LLMs often generate proof scripts with
the right high-level structure, they often struggle
with accurately addressing the sorts of low-level
details that hammers excel at. For example, GPT-
3.5 often knows when to use the induction tactic
to decompose theorems into subgoals, but often
fails to generate the right sequence of tactics to
prove each subgoal...

This paper builds on these prior studies, but also investi-
gates the effectiveness of dependencies in prompting.

3The data structure is a Patricia trie [56, 61].
*https://platform.openai.com/docs/models/gpt-3.5-turbo

A Case Study on the Effectiveness of LLMs in Verification with Proof Assistants

The Verdi project we experiment with is the version in-
cluded in CoqGym [92] and relies on Rocq Prover 8.11, to be
consistent with prior studies.

4 Methodology

To evaluate how models performed under different con-
texts, we extracted the following information for each top-
level construct using SerAPI [26] version 8.10.0+0.7.2 for
hs-to-coq, and 8.11.0+0.11.1 for Verdi’®, along with Rocq
version 8.10.2 and 8.11.0, respectively:

Name and signature: For each top-level definition in a Rocq
source file, we extracted its name (i.e., the identifier bound by
the construct) and its signature. For theorems, the signature
consists of the entire declaration excluding the proof. For
other definitions, the signature includes the entire definition.

In-file context: We defined the in-file context as all lines in
the file prior to the location where a theorem appears.

External dependencies, or dependencies: We defined external
dependencies (or dependencies for short) as any signatures
that the original proof relies on, including definitions and
theorems from other source files. If a dependency was already
included in the in-file context, we excluded it from the list of
dependencies to avoid repetition. Our extraction may include
unnecessary dependencies. Specifically, qualified identifiers
returned by SerAPI can match identifiers defined in multiple
files. In such cases, we included all matching possibilities in
the dependency list.

Notations: For each dependency and file imported via
Rocq’s Require Import command, we collected all associated
notation declarations. However, the definitions underlying
these notations were not necessarily included as dependen-
cies, since a notation may be used without its underlying
definition being required by the proof.

Model and parameter selection. Our model selection
includes both general-purpose and reasoning models with a
mix of full-sized and lightweight variants:

1. GPT-40-mini, version 2024-07-18: A smaller general-
purpose model with a context length of
128,000 tokens [63].

2. GPT-4o, version 2024-11-20: A general-purpose model
with a context length of 128,000 tokens [62].

3. OpenAl 04-mini, version 2025-04-16: A smaller reason-
ing model with a context length of 200,000 tokens [64].
The model does not support changing the default tem-
perature through the API, but supports a reasoning
effort parameter [54]. For our experiments, we have
selected reasoning effort ‘medium, which is the de-
fault.

4. DeepSeek Prover V2: An open-source model based on
DeepSeek V3. This model is fine-tuned for theorem

SOur experiments were conducted on Verdi corresponding to commit
fdb4ede19d2150c254f0ebcfbed4fb9547a734b0.

LMPL’25, October 2025, Singapore

proving in Lean 4. The model has a context length
of 163,840 tokens [90] and a parameter count of 671
billion [68]. We include this model in our case study
to check if exposure to mechanized proofs in another
proof assistant transfers to Rocq proofs.

5. DeepSeek R1: A large open-source reasoning model
with a context length of 163,840 tokens [91], and a
parameter count of 671 billion [18].

Each model was prompted with the same system mes-
sage (for models supporting system prompt), and was al-
lowed a maximum of 16,384 output tokens, configured using
max_tokens or max_completion_tokens based on the model.
The original context lengths for each model were preserved.

For all experiments, we set the temperature to 0.1 for mod-
els that support modifying this parameter over the API (e.g.,
GPT-40). For models that do not support a custom tempera-
ture setting (e.g., 04-mini), the default value of 1.0 was used.

Prompt. We used a minimal system prompt that described
(1) the information provided to the model, (2) the proof task it
has to perform, and (3) the expected response format, asking
the model to respond only with the proof body. The prompt
also specified the current version of the Rocq available and
included whether the version used omega in place of 1ia. We
included this detail as the codebases being evaluated were
relatively old, whereas the models, which have more recent
knowledge cutoffs, are likely aware that omega is deprecated.

Variation of dependencies. We varied the prompt pro-
vided to the LLMs across four conditions: (1) full context
(which we will shorten as the informed mode from now on),
(2) without dependencies and notations, (3) without in-file
context, and (4) with both removed.

When omitting the in-file context, we still include the
import statements present in the file to show the model the
available modules. We also extend dependencies to include
the in-file dependent signatures.

Checking successful proofs. We defined a proof as suc-
cessfully generated by the LLM if and only if SerAPI’s sertop
program accepted the proof when provided with (1) all lines
in the file preceding the theorem (i.e., the in-file context), (2)
the theorem’s signature, and (3) the LLM-generated proof
body. This validation was performed using the version of
SerAPI that matches the Rocq Prover version used in the
corresponding codebase.

5 Evaluation Results

We now share our evaluation results and use them to answer
the four research questions we proposed in Section 1.

RQ1: How do external dependencies and/or context
in the same source file impact proof generation for a
theorem? Among the four ablations we introduced in Sec-
tion 4, most models achieved the highest success rate in

LMPL’25, October 2025, Singapore

the informed mode, as shown in Tables 1a and 1b. For both
hs-to-coq and Verdi, success rates dropped for most models
when either in-file context or dependencies were excluded,
with the worst results occurring when both were excluded.

One potential consequence of including all dependencies
and in-file context is an increase in input tokens. To un-
derstand this implication, we also estimated the number of
tokens required in both projects. We show the statistics in
Table 2.

RQ2: How do LLMs perform on proofs of different
sizes? Figures 4a and 4b show the proof generation suc-
cess rates in each tactic count interval in light colors. These
figures show that, with the exception of GPT-40-mini, all
LLMs have high success rates in generating proofs of small
sizes. These success rates drop as the proof size increases.
However, even when the proof becomes quite large, LLMs
can still succeed in some cases in both projects.

However, one question we need to address to make sure
our results are valid is to check whether LLMs were generat-
ing these proofs or whether they have simply “memorized”
all these proofs, as both projects are open-source projects
available online. For this reason, we further checked if the
generated proofs are identical to the original proofs. We show
all the generated identical proofs, or “plagiarized” proofs, in
Figs. 4a and 4b using dark colors.

The results show that LLMs indeed generate identical
proofs in both projects. In hs-to-coq, these are all small
proofs, which have a high likelihood of being identical “by
coincidence”. On the other hand, some of the larger generated
proofs in Verdi are identical to the original proofs, suggesting
that the proof might have been in these models’ knowledge
set.

RQ3: Is there a difference when running LLMs on dif-
ferent verification projects? First, the impact of adding
dependencies or in-file context also varies between these
two projects. As seen in Table 3a, the benefits of in-file con-
text diminished in hs-to-coq for proofs involving a larger
number of tactics, and, in some cases, even reduced success
rates for certain models. Conversely, simpler proofs with
fewer tactics appeared to benefit from the in-file context.

In contrast, for Verdi, adding in-file context had a remark-
ably strong effect. As shown in Table 3b, external depen-
dencies alone were mostly insufficient for handling longer
proofs (e.g., 20+ tactics) with a higher number of tactics in
the original proof. The models were only able to perform
better in the informed mode, where the in-file context was
provided.

Another difference between these two projects is that
LLMs did not generate any proofs identical to original proofs
in proofs with a larger tactic count in hs-to-coq.

It is unclear why hs-to-coq and Verdi exhibit these dif-
ferences. However, this finding suggests that studying one

Baris Bayazit, Yao Li, and Xujie Si

100%

gpt-4o0-mini

gpt-4o0

04-mini
deepseek-prover-v2
deepseek-r1-0528

80% -

60%

punni

40%

- J_|_’_‘
0% - T
0-4 5-9 10-14 15-19 20+

56% 21% 12% 7% 5%

Intervals by # tactics
(fraction of proofs

Success rate

(a) hs-to-coq

100%
gpt-40-mini

gpt-4o0

04-mini
deepseek-prover-v2
deepseek-r1-0528

80% -

60%

pugnn

40%

Success rate

20%

0% -

0-4 5-9 10-14 15-19 20-24 25+
23% 33% 11% 7% 7% 19%

Intervals by # tactics
(fraction of proofs)

(b) Verdi

Figure 4. Success rates (light) vs. identically generated
proofs (dark) by tactic count intervals for hs-to-coq and
Verdi.

project may not be sufficient for improving LLMs’ effective-
ness in other projects.

RQ4: How is the quality of proofs generated by LLMs?
In this section, we highlight some of the interesting proofs—
including both successful ones and failed ones—generated
by LLMs in our case study.

We compare the number of tactics in original proofs and
in proofs generated by LLMs. In both projects, we find that
LLMs can generate shorter proofs than the original ones.

Let’s start with an example in hs-to-coq. We show an
original proof demonstrating that unit is a monoid that sat-
isfies all the Monoid typeclass laws in Fig. 5a. The theorem
statement itself is not important. The original proof works
by first splitting the theorem into four subgoals, each rep-
resenting one monoid property. The proof then unfolds a
number of definitions—a style that is consistent with many
other proofs in the same file. Then, for each subgoal, the
proof proceeds by either a case analysis or an induction.

We show a proof generated by OpenAl 04-mini and
DeepSeek-R1-0528 with no external dependency or same-file
context in Fig. 5b. The proof is much simpler: it first uses
the constructor tactic, which does the same thing as split
in the original here. Then, LLMs “realize” that all subgoals
can be solved using the same sequence of tactics: intros []
to introduce a variable into the context and perform a case

A Case Study on the Effectiveness of LLMs in Verification with Proof Assistants

LMPL’25, October 2025, Singapore

Table 1. Success counts and rates across different settings for hs-to-coq and Verdi.

(a) hs-to-coq (187 theorems)

Model Informed No in-file context No dependencies Neither

GPT-40-mini 42 (22.5%) 35 (18.7%) 44 (23.5%) 31 (16.6%)
GPT-40 92 (49.2%) 73 (39.0%) 83 (44.4%) 48 (25.7%)
o4-mini 97 (51.9%) 81 (43.3%) 81 (43.3%) 52 (27.8%)
DeepSeek Prover V2 85 (45.5%) 76 (40.6%) 71 (38.0%) 58 (31.0%)
DeepSeek R1 82 (43.9%) 74 (39.6%) 84 (44.9%) 48 (25.7%)

(b) Verdi (579 theorems)

Model Informed No in-file context No dependencies Neither
GPT-40-mini 55 (9.5%) 27 (4.7%) 57 (9.8%) 17 (2.9%)
GPT-40 177 (30.6%) 117 (20.2%) 170 (29.4%) 38 (6.6%)
o4-mini 172 (29.7%) 124 (21.4%) 177 (30.6%) 45 (7.8%)
DeepSeek Prover V2 164 (28.3%) 108 (18.7%) 159 (27.5%) 42 (7.3%)
DeepSeek R1 148 (25.6%) 123 (21.2%) 140 (24.2%) 40 (6.9%)

Table 2. Estimated prompt token counts for each setting,
excluding the system prompt (rounded to the nearest integer).
The token counts were estimated using OpenAI’s TikToken
library [65].

Project Condition Mean Median Max
Informed 3379 3162 10223

hs—to-co No dependencies 1766 1292 6833
9 Noin-file context 1916 1862 5720

Neither 152 147 228

Informed 6944 5488 25357

Verdi No dependencies 5653 4393 19289
No in-file context 2559 1618 20674

Neither 174 167 445

analysis on that variable at the same time, then auto for
automatically discharging each goal.

An even smarter proof generated by LLMs can be found
in Verdi. We show the theorem statement in Fig. 6. The the-
orem describes a relation between two variables, failed and
net, when they are both in a multi-step transition relation
defined by step_ordered_dynamic_failure_star—the exact
definition of this step relation is not important. The orig-
inal proof in Verdi is 24 lines of proof script, involves an
induction, and Ltac’s match statement.

However, OpenAl 04-mini is able to find a proof that con-
sists of only 4 basic tactics on the informed mode, as shown
in Fig. 6. This is because the contrapositive of this proposition
has already been proven as a theorem right before this theo-
rem (called ordered_dynamic_failed_then_initialized). Ope-
nAI o4-mini “recognizes” this connection between the two

Instance instance_MonoidlLaws_unit :
MonoidLaws unit.
Proof.
split;
unfold op_zlzlzgzg _, Semigroup__unit,
op_zlzlzgzg ___,
Base.Semigroup__unit_op_zlzlzgzg _;
unfold mappend, mempty, mconcat,
Monoid__unit, mappend__, mconcat__,
Base.Monoid__unit_mappend,
Base.Monoid__unit_mempty,
Base.Monoid__unit_mconcat.
- intro x. destruct x. auto.
- intro x. destruct x. auto.
- intros. auto.
- intros x. induction x; simpl. auto. auto.
Qed.

(a) The original proof showing that unit is a monoid that satis-
fies all the Monoid typeclass laws.

Proof.
constructor; intros []; auto.
Qed.

(b) A proof for the same theorem generated by OpenAl 04-mini
and DeepSeek-R1-0528. The two models generate the same
proof for this theorem.

Figure 5. A comparison between the original
proof and a proof generated by LLMs for theorem
instance_MonoidLaws_unit in hs-to-coq.

theorems and proves this theorem by simply applying its
contrapositive.

LMPL’25, October 2025, Singapore

Baris Bayazit, Yao Li, and Xujie Si

Table 3. Percent gain in success rates from no in-file context (dependencies only) to informed per model and interval (with

interval share in %).

(a) hs-to-coq

Model 0-4 (56%) 5-9(21%) 10-14 (12%) 15-19 (7%) 20+ (5%)

GPT-40 16.4 0.0 9.1 -7.7 11.1

GPT-40-mini 8.7 -2.5 0.0 -7.7 0.0

04-mini 14.4 10.3 -13.7 7.7 -11.1

DeepSeek Prover V2 0.0 18.0 9.1 0.0 0.0

DeepSeek R1 4.8 10.3 0.0 -15.4 11.1

(b) Verdi

Model 0-4 (23%) 5-9(33%) 10-14 (11%) 15-19 (7%) 20-24 (7%) 25+ (19%)
GPT-40-mini 7.6 4.1 3.1 0.0 9.8 3.7
GPT-40 9.9 114 7.8 11.9 22.0 5.5
04-mini 10.6 6.8 12.5 11.9 12.2 2.8
DeepSeek Prover V2 3.8 15.1 12.5 9.5 14.6 3.7
DeepSeek R1 4.6 4.7 3.1 7.1 4.9 2.8

Lemma ordered_dynamic_state_not_initialized_not_failed :
forall net failed tr,
step_ordered_dynamic_failure_star
step_ordered_dynamic_failure_init
(failed, net) tr ->
forall n, ~ In n (odnwNodes net) ->
~ In n failed.

(* The following proof is generated by OpenAI o4-mini. *)

Proof.

intros net failed tr Hstar n Hnot Hin.

apply Hnot.

eapply ordered_dynamic_failed_then_initialized; eauto.
Qed.

Figure 6. A Rocq theorem found in Verdi (in the
file core/DynamicNetLemmas.v) and a proof generated by
OpenAl 04-mini. We omit the original proof found in Verdi
because the proof script is 29 tactics long.

We should point out that the two theorems shown in
Figs. 5 and 6 can also be solved using classical tools like
CoqHammer [14, 15]. CoqHammer can solve the hs-to-coq
theorem (Fig. 5) with its own tactic called sfirstorder. For
the Verdi theorem (Fig. 6), it performs a proof search using
an external automated theorem prover and also finds that the
theorem can be proven with the help of its contrapositive,
similar to the proof generated by LLMs. Nevertheless, it is
impressive that LLMs are able to find these simple proofs
given only one shot without a feedback loop.

The next theorem that LLMs come up with a simpler proof
is the most surprising to us, and the theorem cannot be solved
by CoqHammer. We show the theorem and its original proof

in Fig. 7a. The theorem states that the pair a * b staisfy
the EqExact law (Fig. 3) if both a and b satisfies this law.
We show the original proof script in Fig. 7a to demonstrate
the complexity of the original proof and to compare it with
a proof generated by LLMs, but the reader should not try
to read the proof script without Rocq Prover’s interactive
environment. The key structure of the proof is to perform
two case analyses indicated by the two uses of the destruct
tactic: (1) if two variables of type a are equal by ==, and (2) if
two variables of type b are equal by ==.

We show a proof generated by DeepSeek-R1-0528 with
the same-file context but without external dependencies in
Fig. 7b. The proof is more concise. A main reason is that, in-
stead of doing a case analysis on == like in the original proof,
this proof pesforms a case analysis on Eq_eq, whose type
is an inductively defined proposition reflect (Fig. 3) that
relates == and =. Intuitively, performing a case analysis on
reflect gives us more information than just ==. For example,
the original proof uses move /Eq_eq to convert between ==
and = in various places, but such a step is unnecessary in the
generated proof.

Performing a case analyses on an inductively defined
proposition like reflect to “extract more information” is
a classical technique in mechanized verification discussed
in Rocq Prover textbooks [66, Chapter “Inductively Defined
Propositions”]. However, Eq_eq is a function defined in
hs-to-cog—to be more precise, in the same file as
EqExact_pair—and a case analysis on Eq_eq was used only
once in the same file before this theorem, but DeepSeek-R1-
0528 is still able to generate a proof like this in one shot
without a feedback loop.

A Case Study on the Effectiveness of LLMs in Verification with Proof Assistants

Instance EqExact_pair {a b}
“{EqExact a} “{EqExact b} : EgExact (a * b).
Proof.
split; rewrite /op_zeze__ /op_zsze__
/Eq_pair___ /op_zeze
case =>[??] [??] //=. destruct (_ == _) eqgn:?.
- rewrite andb_true_l. move /Eq_eq in Heqgb@.

/op_zsze .

destruct (_ == _) eqgn:?.

+ constructor. move /Eq_eq in Hegbl.
subst. reflexivity.

+ constructor. move /Eq_eq in Hegbl.
intro. apply Hegbl.
inversion H5; reflexivity.

- rewrite andb_false_1. constructor.
move /Eq_eq in Hegb®. intro.
inversion H5. apply Hegb®. assumption.
Qed.

(a) The original proof showing that the pair a * b satisfies the
EqExact law (Fig. 3) whenever both a and b do.

Proof.
split; unfold op_zeze__, op_zsze__,
Eq_pair___, op_zeze____, op_zsze____

=> - [x1 y1] [x2 y2] /=.

- case: (Eg_eq x1 x2) => [-> | NEQx];
case: (Egq_eq y1 y2) => [-> | NEQyI;
constructor; congruence.

Qed.

(b) A proof for the same theorem generated by DeepSeek-R1-
0528.

Figure 7. A comparison between the original
proof and a proof generated by LLMs for theorem
instance_MonoidLaws_unit in hs-to-coq.

On the negative side, we find that LLMs can stutter in
generating some proofs. We show a theorem in hs-to-coq
and its original proof in Fig. 8a. The proof is simple and
straightforward. However, GPT 40-mini generates a failed
proof in the informed mode shown in Fig. 8b. The proof
fails at the first unfold. However, an odder phenomenon is
that, after the first rewrite /op_zeze__, the proof just keeps
repeating the same tactic, seemingly indefinitely.

This phenomenon is not common, but it has appeared in
both hs-to-coq and Verdi, in different theorems, various
LLMs, when invoking various tactics. However, we cannot
deduce or conjecture what the reasons are for this to happen.

Limitations. In terms of design, our experimental setup
focused exclusively on single-pass proof generation, without
incorporating a feedback loop. Although we recorded errors
produced by sertop for each LLM and setting for future
work, we did not analyze the model’s ability to respond to

LMPL’25, October 2025, Singapore

Lemma simpl_list_cons_eq a “{Eq_ a} (x y :a) xs ys :
(cons x xs) == (cons y ys) = (x == y) && (xs == ys).
Proof.
unfold op_zeze
simpl. auto.
Qed.

op_zeze Eq_list.

— —_—

(a) The theorem simpl_list_cons_eq theorem in hs-to-coq
and its original proof.

(* The following proof is generated by GPT 4o-mini. *)
Proof.
unfold Eq___list, op_zeze
rewrite /eqlist.

op_zeze eglist.

— ———

destruct xs, ys; simpl.
- rewrite /op_zeze__.
rewrite /op_zeze__.
rewrite /op_zeze__.
(* The proof goes on by repeating [rewrite]s. *)

(b) A failed proof generated by GPT 40-mini that repeats the
same tactic.

Figure 8. A comparison between the original proof
and a failed proof generated by LLMs for theorem
simpl_list_cons_eq in hs-to-coq.

errors. Moreover, when analyzing dependencies, we limited
our scope to files within the same Rocq project. While the
models were given the import statements in each setting,
the external libraries were not indexed. Consequently, we
assumed that LLMs would have implicit knowledge of widely
used libraries such as ssreflect, or StructTact, InfSeqExt, and
Cheerios (for Verdi), but did not verify this directly.

A further limitation lies in our dataset, which, while con-
taining a substantial number of theorems, covers only two
Rocq projects. Rocq projects may naturally vary in their
structure and organization, which may heavily impact the
results for settings with one of the dependencies or in-file
contexts.

Finally, our experiments were conducted using Rocq ver-
sion 8.10.2 and 8.11.0, which are both relatively old. While
this choice was necessary to ensure compatibility with the
codebases we studied, it may impact the relevance of results
for newer versions of Rocq if the LLMs we used were trained
on more recent versions of the language.

6 Related Work

Benchmarks for proofs. CoqGym is a pioneer in provid-
ing an extensive Rocq benchmark for machine learning mod-
els [92], containing 71K proofs from 123 real-life projects. It
has been used by various studies on proof automation, such
as First and Brun [23], First et al. [24], Lu et al. [51]. These
works are also an inspiration for the case studies presented

LMPL’25, October 2025, Singapore

in this paper. However, one issue with CoqGym is that it
relies on older versions of Rocq Prover. For this reason, more
recent tools like the CogPilot benchmarking framework
choose to build their own datasets [44].

Outside Rocq Prover, there are many benchmarks for other
proof assistants or formal-method tools, such as
DafnyBench [50], LeanDojo [93], miniCodeProps [49],
FVAPPS [20], VerifyThisBench [19], Verina [94], etc.

Proof automation. Proof automation has always been
a goal in research on proof assistants. Most of these works
rely on automated theorem provers (ATPs) like SAT/SMT
solvers. For example, SMTCoq [5] uses SAT/SMT solvers
to prove theorems and then reconstructs Rocq proofs from
them. CogHammer [14, 15] defines a set of automation tac-
tics for dependent type theory, uses external ATPs to find a
proof, and then constructs a proof using its automation tac-
tics by taking hints from proofs found by ATPs. In this way,
CoqHammer is able to construct Rocq proofs that use intu-
itionistic logic with the help of ATPs that work on classical
logic.

Other proof automation tools like Tactician [7] use ma-
chine learning (but not LLMs) instead. It provides sugges-
tions for the next tactic based on “previously written tactics”.
CoqGym, the benchmark for Rocq proofs, also includes a
tool called ASTactic, which is trained on CoqGym and uses
deep learning to generate proofs automatically [92]. Some
more recent works in this area include Proverbot9001 [72],
Passport [73], QEDCartographer [74], etc.

LLMs and proof assistants. There have been a few re-
cent works that investigate the capabilities of LLMs in gener-
ating proofs for proof assistants. We have already discussed
Lu et al. [51]’s study on Verdi in Section 3.2. Qin et al. [67]
studied FSCQ, a verified file system [12]. They conjectured
that one reason LLMs fail to generate proofs is that LLMs
struggle to find relevant lemmas when too many lemmas are
given in a prompt [67, Section 4.3].

There have also been many works that leverage the power
of LLMs to build proof-automation tools. For example, Bal-
dur uses fine-tuned LLMs to generate whole proofs for Is-
abelle/HOL [25]. Their evaluation of Baldur on the PISA
dataset [36] further shows that LLMs outperform small-
model-driven search-based methods. PALM builds on its
observation on Verdi (Section 3.2) and uses a generate-then-
repair approach that combines LLMs and symbolic methods
(e.g., CoqHammer [14, 15]) to generate Rocq proofs [51].
Draft, Sketch, and Prove (DSP) uses LLMs to generate a
sketch of a formal proof and then uses ATPs to fill in the
missing details in the sketch [37]. Some other works in this
area include Hu et al. [32], Kasibatla et al. [41], Lin et al.
[48], Thompson et al. [82], Zhang et al. [98], etc.

Premise selection for proof generation. Premise selec-
tion refers to the process of selecting relevant premises, such

Baris Bayazit, Yao Li, and Xujie Si

as definitions and lemmas [35]. This is a common process
used by many proof-generation works. For example, PALM
uses Term Frequency-Inverse Document Frequency (TF-IDF)
[39] and k nearest neighbors (KNN) [21] to select relevant
premises. CogPilot selects premises based on “metrics such
as distance from the generation target or similarity with
other theorem statements” [44].

Our work takes a much simpler approach by directly in-
cluding dependencies and in-file context in the prompt. Prior
works like Baldur did a similar thing, but they only included
in-file context [25, Section 2.3].

LLMs and math. LLMs have been studied extensively
in the context of mathematics. Earlier research focuses on
benchmarking LLMs with simple math reasoning tasks [6,
13, 101]. Recently, Olympiad-level math theorem proving has
been successfully tackled by LLMs [2, 46, 83]. There has also
been rapid progress in auto-formalizing mathematics [47, 57,
88].

7 Conclusion

In this paper, we conduct a case study based on two real-
world Rocq projects: the hs-to-coq project and Verdi. Our
case study shows that LLMs can be effective in generating
whole proofs for program correctness theorems. More specif-
ically, we show that external dependencies and in-file context
can significantly help with proof generation. We also find
that LLMs perform well on small proofs. While its effective-
ness degrades when the proof size increases, there is still
a decent chance for it to generate whole proofs. However,
our study also shows that the effectiveness characteristics of
LLMs differ in different verification projects, which suggests
that studying one project may not be sufficient for improv-
ing LLMs’ effectiveness in other projects. Finally, we find
that LLMs can generate concise and smart proof scripts, can
apply classical techniques to new definitions, but can also
produce meaningless stuttering proofs for unknown reasons.

We believe that using LLMs for verification with proof
assistants is a promising direction that deserves more at-
tention. Program verification is suitable for tools like LLMs
that are unpredictable and can hallucinate [33, 99]. First,
proofs are not computational. A generated inefficient proof
has little to no impact compared with a generated inefficient
program. Second, the proof-checking mechanisms in proof
assistants (e.g., Qed of Rocq Prover) can safeguard generated
proofs to make sure that they are correct.

Verification with proof assistants can be potentially much
more useful in software engineering if proof automation can
be significantly improved. Indeed, researchers have argued
that one major reason that formal methods are rarely used
in software development today is their social aspect [27]. It
will greatly improve the usability of formal methods (and
hence the reliability of software) if LLMs can help with proof
automation.

A Case Study on the Effectiveness of LLMs in Verification with Proof Assistants

Acknowledgments

We thank all the anonymous reviewers of LMPL 2025 for
their thoughtful and constructive comments on this paper
and their suggestions for potential future directions for this
work. We thank Yiming Lin for his feedback on a draft of
this paper.

References

[1] Agda Developers. 2025. Agda. https://agda.readthedocs.io/

[2] AlphaProof. 2024. Al achieves silver-medal standard solv-
ing International Mathematical Olympiad problems Published.
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-
silver-medal-level/

Andrew W. Appel. 2014. Program Logics - for Certified Compilers.
Cambridge University Press. http://www.cambridge.org/de/

[3

[t

academic/subjects/computer-science/programming-languages-
and-applied-logic/program-logics-certified-compilers?format=HB
Andrew W. Appel. 2022. Coq’s vibrant ecosystem for verification en-
gineering (invited talk). In CPP °22: 11th ACM SIGPLAN International
Conference on Certified Programs and Proofs, Philadelphia, PA, USA,
January 17 - 18, 2022, Andrei Popescu and Steve Zdancewic (Eds.).
ACM, 2-11. https://doi.org/10.1145/3497775.3503951

Michaél Armand, Germain Faure, Benjamin Grégoire, Chantal Keller,
Laurent Théry, and Benjamin Werner. 2011. A Modular Integration
of SAT/SMT Solvers to Coq through Proof Witnesses. In Certified
Programs and Proofs - First International Conference, CPP 2011, Kenting,
Taiwan, December 7-9, 2011. Proceedings (Lecture Notes in Computer
Science, Vol. 7086), Jean-Pierre Jouannaud and Zhong Shao (Eds.).
Springer, 135-150. https://doi.org/10.1007/978-3-642-25379-9_12
Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Ed-
ward W. Ayers, Dragomir Radev, and Jeremy Avigad. 2023. ProofNet:
Autoformalizing and Formally Proving Undergraduate-Level Mathe-
matics. CoRR abs/2302.12433 (2023). https://doi.org/10.48550/ARXIV.
2302.12433 arXiv:2302.12433

Lasse Blaauwbroek, Josef Urban, and Herman Geuvers. 2020. The
Tactician - A Seamless, Interactive Tactic Learner and Prover for Coq.
In Intelligent Computer Mathematics - 13th International Conference,
CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings (Lecture Notes
in Computer Science, Vol. 12236), Christoph Benzmiiller and Bruce R.
Miller (Eds.). Springer, 271-277. https://doi.org/10.1007/978-3-030-
53518-6_17

[8] Richard J. Boulton, Andrew D. Gordon, Michael J. C. Gordon, John
Harrison, John Herbert, and John Van Tassel. 1992. Experience with
Embedding Hardware Description Languages in HOL. In Theorem
Provers in Circuit Design, Proceedings of the IFIP TC10/WG 10.2 In-
ternational Conference on Theorem Provers in Circuit Design: The-
ory, Practice and Experience, Nijmegen, The Netherlands, 22-24 June
1992, Proceedings (IFIP Transactions, Vol. A-10), Victoria Stavridou,
Thomas F. Melham, and Raymond T. Boute (Eds.). North-Holland,
129-156.

[9] Joachim Breitner, Antal Spector-Zabusky, Yao Li, Christine Rizkallah,
John Wiegley, Joshua M. Cohen, and Stephanie Weirich. 2021.
Ready, Set, Verify! Applying hs-to-cogm to real-world Haskell
code. J. Funct. Program. 31 (2021), e5. https://doi.org/10.1017/
50956796820000283

[10] Stephen D. Brookes. 2004. A Semantics for Concurrent Separation
Logic. In CONCUR 2004 - Concurrency Theory, 15th International Con-
ference, London, UK, August 31 - September 3, 2004, Proceedings (Lecture
Notes in Computer Science, Vol. 3170), Philippa Gardner and Nobuko
Yoshida (Eds.). Springer, 16-34. https://doi.org/10.1007/978-3-540-
28644-8_2

[4

[l

[5

—

G

—

[7

—

—

=

flan?

=

—

—

=

LMPL’25, October 2025, Singapore

[11] Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel

Gruetter. 2023. Omnisemantics: Smooth Handling of Nondeter-
minism. ACM Trans. Program. Lang. Syst. 45, 1 (2023), 5:1-5:43.
https://doi.org/10.1145/3579834

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. 2015. Using Crash Hoare logic for
certifying the FSCQ file system. In Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP 2015, Monterey, CA, USA, Octo-
ber 4-7, 2015, Ethan L. Miller and Steven Hand (Eds.). ACM, 18-37.
https://doi.org/10.1145/2815400.28 15402

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Hee-
woo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton,
Reiichiro Nakano, Christopher Hesse, and John Schulman. 2021.
Training Verifiers to Solve Math Word Problems. CoRR abs/2110.14168
(2021). arXiv:2110.14168 https://arxiv.org/abs/2110.14168

Lukasz Czajka, Burak Ekici, and Cezary Kaliszyk. 2018. Concrete
Semantics with Coq and CoqgHammer. In Intelligent Computer Mathe-
matics - 11th International Conference, CICM 2018, Hagenberg, Austria,
August 13-17, 2018, Proceedings (Lecture Notes in Computer Science,
Vol. 11006), Florian Rabe, William M. Farmer, Grant O. Passmore, and
Abdou Youssef (Eds.). Springer, 53-59. https://doi.org/10.1007/978-3-
319-96812-4_5

Lukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automa-
tion for Dependent Type Theory. J Autom. Reason. 61, 1-4 (2018),
423-453. https://doi.org/10.1007/S10817-018-9458-4

Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem
Prover and Programming Language. In Automated Deduction - CADE
28 - 28th International Conference on Automated Deduction, Virtual
Event, July 12-15, 2021, Proceedings (Lecture Notes in Computer Science,
Vol. 12699), André Platzer and Geoff Sutcliffe (Eds.). Springer, 625-635.
https://doi.org/10.1007/978-3-030-79876-5_37

Edsko de Vries and Vasileios Koutavas. 2011. Reverse Hoare Logic.
In Software Engineering and Formal Methods - 9th International Con-
ference, SEFM 2011, Montevideo, Uruguay, November 14-18, 2011. Pro-
ceedings (Lecture Notes in Computer Science, Vol. 7041), Gilles Barthe,
Alberto Pardo, and Gerardo Schneider (Eds.). Springer, 155-171.
https://doi.org/10.1007/978-3-642-24690-6_12

DeepSeek-Al Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao
Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan
Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guant-
ing Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang
Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu,
Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang,
Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou,
Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang,
Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun
Gao, Wengin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu,
Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin
Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng
Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun,
Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao

https://agda.readthedocs.io/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
https://doi.org/10.1145/3497775.3503951
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.48550/ARXIV.2302.12433
https://doi.org/10.48550/ARXIV.2302.12433
https://arxiv.org/abs/2302.12433
https://doi.org/10.1007/978-3-030-53518-6_17
https://doi.org/10.1007/978-3-030-53518-6_17
https://doi.org/10.1017/S0956796820000283
https://doi.org/10.1017/S0956796820000283
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1145/3579834
https://doi.org/10.1145/2815400.2815402
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.1007/978-3-319-96812-4_5
https://doi.org/10.1007/978-3-319-96812-4_5
https://doi.org/10.1007/S10817-018-9458-4
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-642-24690-6_12

—

LMPL’25, October 2025, Singapore

Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan
Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang
You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping
Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang,
Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng
Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin
Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng
Xu, Zhongyu Zhang, and Zhen Zhang. 2025. DeepSeek-R1: Incen-
tivizing Reasoning Capability in LLMs via Reinforcement Learning.
arXiv:2501.12948 [cs.CL] https://arxiv.org/abs/2501.12948

Xun Deng, Sicheng Zhong, Andreas G. Veneris, Fan Long, and Xujie Si.
2025. VerifyThisBench: Generating Code, Specifications, and Proofs
All at Once. CoRR abs/2505.19271 (2025). https://doi.org/10.48550/
ARXIV.2505.19271 arXiv:2505.19271

Quinn Dougherty and Ronak Mehta. 2025. Proving the Coding In-
terview: A Benchmark for Formally Verified Code Generation. In
IEEE/ACM International Workshop on Large Language Models for Code,
LLM4Code@ICSE 2025, Ottawa, ON, Canada, May 3, 2025. IEEE, 72-79.
https://doi.org/10.1109/LLM4CODE66737.2025.00014

Sahibsingh A. Dudani. 1976. The Distance-Weighted k-Nearest-
Neighbor Rule. IEEE Trans. Syst. Man Cybern. 6, 4 (1976), 325-327.
https://doi.org/10.1109/TSMC.1976.5408784

Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam
Chlipala. 2020. Simple High-Level Code For Cryptographic Arith-
metic: With Proofs, Without Compromises. ACM SIGOPS Oper. Syst.
Rev. 54, 1 (2020), 23-30. https://doi.org/10.1145/3421473.3421477
Emily First and Yuriy Brun. 2022. Diversity-Driven Automated For-
mal Verification. In 44th IEEE/ACM 44th International Conference on
Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022.
ACM, 1-13. https://doi.org/10.1145/3510003.3510138

Emily First, Yuriy Brun, and Arjun Guha. 2020. TacTok: semantics-
aware proof synthesis. Proc. ACM Program. Lang. 4, OOPSLA (2020),
231:1-231:31. https://doi.org/10.1145/3428299

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. 2023.
Baldur: Whole-Proof Generation and Repair with Large Language
Models. In Proceedings of the 31st ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2023, San Francisco, CA, USA, December 3-9,
2023, Satish Chandra, Kelly Blincoe, and Paolo Tonella (Eds.). ACM,
1229-1241. https://doi.org/10.1145/3611643.3616243

Emilio Jesus Gallego Arias. 2016. SerAPI: Machine-Friendly, Data-
Centric Serialization for Coq. Technical Report. MINES ParisTech.
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408

[27] Joseph A. Goguen and Luqi. 1995. Formal Methods and Social Con-

text in Software Development. In TAPSOFT 95: Theory and Practice
of Software Development, 6th International Joint Conference CAAP/-
FASE, Aarhus, Denmark, May 22-26, 1995, Proceedings (Lecture Notes
in Computer Science, Vol. 915), Peter D. Mosses, Mogens Nielsen, and
Michael I. Schwartzbach (Eds.). Springer, 62-81. https://doi.org/10.
1007/3-540-59293-8_187

Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey. 2023. Mostly
Automated Proof Repair for Verified Libraries. Proc. ACM Program.
Lang. 7, PLDI (2023), 25-49. https://doi.org/10.1145/3591221
Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,
Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and
Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers.
In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2015, Mumbai, India,
January 15-17, 2015, Sriram K. Rajamani and David Walker (Eds.).
ACM, 595-608. https://doi.org/10.1145/2676726.2676975

—

—

—_

=

=

—

[

[

—

=

—

Baris Bayazit, Yao Li, and Xujie Si

[30] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jie-

ung Kim, Vilhelm Sjoberg, and David Costanzo. 2016. CertiKOS:
An Extensible Architecture for Building Certified Concurrent OS
Kernels. In 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4,
2016, Kimberly Keeton and Timothy Roscoe (Eds.). USENIX Associa-
tion, 653-669. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/gu

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu,
Jérémie Koenig, Vilhelm Sjéberg, Hao Chen, David Costanzo, and
Tahina Ramananandro. 2018. Certified concurrent abstraction layers.
In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2018, Philadelphia, PA,
USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.).
ACM, 646-661. https://doi.org/10.1145/3192366.3192381

Jilin Hu, Jianyu Zhang, Yongwang Zhao, and Talia Ringer. 2025. Hy-
bridProver: Augmenting Theorem Proving with LLM-Driven Proof
Synthesis and Refinement. CoRR abs/2505.15740 (2025). https:
//doi.org/10.48550/ARXIV.2505.15740 arXiv:2505.15740

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin
Feng, Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng
Feng, Bing Qin, and Ting Liu. 2025. A Survey on Hallucination
in Large Language Models: Principles, Taxonomy, Challenges, and
Open Questions. ACM Trans. Inf. Syst. 43, 2 (2025), 42:1-42:55. https:
//doi.org/10.1145/3703155

Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon
Fairbairn, Joseph Fasel, Maria M. Guzman, Kevin Hammond, John
Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Will Par-
tain, and John Peterson. 1992. Report on the programming language
Haskell: a non-strict, purely functional language version 1.2. SIGPLAN
Not. 27,5 (May 1992), 1-164. https://doi.org/10.1145/130697.130699
Geoffrey Irving, Christian Szegedy, Alexander A. Alemi, Niklas Eén,
Francois Chollet, and Josef Urban. 2016. DeepMath - Deep Sequence
Models for Premise Selection. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Pro-
cessing Systems 2016, December 5-10, 2016, Barcelona, Spain, Daniel D.
Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Ro-
man Garnett (Eds.). 2235-2243. https://proceedings.neurips.cc/paper/
2016/hash/f197002b9a0853eca5e046d9ca4663d5-Abstract.html
Albert Qiaochu Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu.
2021. LISA: Language models of ISAbelle proofs. In 6th Conference
on Artificial Intelligence and Theorem Proving. 378-392.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothée Lacroix,
Jiacheng Liu, Wenda Li, Mateja Jamnik, Guillaume Lample, and
Yuhuai Wu. 2023. Draft, Sketch, and Prove: Guiding Formal Theorem
Provers with Informal Proofs. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net. https://openreview.net/forum?id=SMa9EAovKMC
Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim.
2024. A Survey on Large Language Models for Code Generation. CoRR
abs/2406.00515 (2024). https://doi.org/10.48550/ARXIV.2406.00515
arXiv:2406.00515

Karen Spéarck Jones. 2004. A statistical interpretation of term speci-
ficity and its application in retrieval. J. Documentation 60, 5 (2004),
493-502. https://doi.org/10.1108/00220410410560573

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars
Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular
foundation for higher-order concurrent separation logic. J. Funct.
Program. 28 (2018), e20. https://doi.org/10.1017/50956796818000151
Saketh Ram Kasibatla, Arpan Agarwal, Yuriy Brun, Sorin Lerner, Talia
Ringer, and Emily First. 2024. Cobblestone: Iterative Automation for
Formal Verification. CoRR abs/2410.19940 (2024). https://doi.org/10.
48550/ARXI1V.2410.19940 arXiv:2410.19940

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.48550/ARXIV.2505.19271
https://doi.org/10.48550/ARXIV.2505.19271
https://arxiv.org/abs/2505.19271
https://doi.org/10.1109/LLM4CODE66737.2025.00014
https://doi.org/10.1109/TSMC.1976.5408784
https://doi.org/10.1145/3421473.3421477
https://doi.org/10.1145/3510003.3510138
https://doi.org/10.1145/3428299
https://doi.org/10.1145/3611643.3616243
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408
https://doi.org/10.1007/3-540-59293-8_187
https://doi.org/10.1007/3-540-59293-8_187
https://doi.org/10.1145/3591221
https://doi.org/10.1145/2676726.2676975
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.48550/ARXIV.2505.15740
https://doi.org/10.48550/ARXIV.2505.15740
https://arxiv.org/abs/2505.15740
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/130697.130699
https://proceedings.neurips.cc/paper/2016/hash/f197002b9a0853eca5e046d9ca4663d5-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/f197002b9a0853eca5e046d9ca4663d5-Abstract.html
https://openreview.net/forum?id=SMa9EAovKMC
https://doi.org/10.48550/ARXIV.2406.00515
https://arxiv.org/abs/2406.00515
https://doi.org/10.1108/00220410410560573
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.48550/ARXIV.2410.19940
https://doi.org/10.48550/ARXIV.2410.19940
https://arxiv.org/abs/2410.19940

A Case Study on the Effectiveness of LLMs in Verification with Proof Assistants

(42]

(43

=

(44]

(45]

[46]

(47]

(48

[}

(49]

(50]

(51]

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David A. Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2009. seL4: formal verification of an OS kernel..
In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles 2009, SOSP 2009, Big Sky, Montana, USA, October 11-14,
2009, Jeanna Neefe Matthews and Thomas E. Anderson (Eds.). ACM,
207-220. https://doi.org/10.1145/1629575.1629596

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf
Honoré, William Mansky, Benjamin C. Pierce, and Steve Zdancewic.
2019. From C to interaction trees: specifying, verifying, and testing a
networked server. In Proceedings of the 8th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, CPP 2019, Cascais,
Portugal, January 14-15, 2019, Assia Mahboubi and Magnus O. Myreen
(Eds.). ACM, 234-248. https://doi.org/10.1145/3293880.3294106
Andrei Kozyrev, Gleb Solovev, Nikita Khramov, and Anton Podkopaev.
2024. CoqPilot, a plugin for LLM-based generation of proofs. In Pro-
ceedings of the 39th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2024, Sacramento, CA, USA, October 27 -
November 1, 2024, Vladimir Filkov, Baishakhi Ray, and Minghui Zhou
(Eds.). ACM, 2382-2385. https://doi.org/10.1145/3691620.3695357
Xavier Leroy. 2009. Formal verification of a realistic compiler. Com-
mun. ACM 52, 7 (2009), 107-115. https://doi.org/10.1145/1538788.
1538814

Zenan Li, Zhaoyu Li, Wen Tang, Xian Zhang, Yuan Yao, Xujie Si, Fan
Yang, Kaiyu Yang, and Xiaoxing Ma. 2025. Proving Olympiad Inequal-
ities by Synergizing LLMs and Symbolic Reasoning. In The Thirteenth
International Conference on Learning Representations, ICLR 2025, Sin-
gapore, April 24-28, 2025. OpenReview.net. https://openreview.net/
forum?id=FiyS0OecSm0

Zenan Li, Yifan Wu, Zhaoyu Li, Xinming Wei, Xian Zhang,
Fan Yang, and Xiaoxing Ma. 2024. Autoformalize Mathemat-
ical Statements by Symbolic Equivalence and Semantic Con-
sistency. In Advances in Neural Information Processing Systems
38: Annual Conference on Neural Information Processing Sys-
tems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10
- 15, 2024, Amir Globersons, Lester Mackey, Danielle Belgrave,
Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
Zhang (Eds.). http://papers.nips.cc/paper_files/paper/2024/hash/
6034a661584af6c28fd97a6f23e56c0a- Abstract-Conference.html
Xiaohan Lin, Qingxing Cao, Yinya Huang, Haiming Wang, Jian-
qiao Lu, Zhengying Liu, Lingi Song, and Xiaodan Liang. 2024.
FVEL: Interactive Formal Verification Environment with Large
Language Models via Theorem Proving. In Advances in Neural
Information Processing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024, Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
Tomczak, and Cheng Zhang (Eds.). http://papers.nips.cc/paper_files/
paper/2024/hash/62c6d7893b13a13c659¢cb815852dd00d-Abstract-
Datasets_and_Benchmarks_Track.html

Evan Lohn and Sean Welleck. 2024. miniCodeProps: a Minimal
Benchmark for Proving Code Properties. CoRR abs/2406.11915 (2024).
https://doi.org/10.48550/ARXIV.2406.11915 arXiv:2406.11915

Chloe Loughridge, Qinyi Sun, Seth Ahrenbach, Federico Cassano,
Chuyue Sun, Ying Sheng, Anish Mudide, Md Rakib Hossain Misu,
Nada Amin, and Max Tegmark. 2025. DafnyBench: A Benchmark for
Formal Software Verification. Trans. Mach. Learn. Res. 2025 (2025).
https://openreview.net/forum?id=yBgTVWecclx

Minghai Lu, Benjamin Delaware, and Tianyi Zhang. 2024. Proof
Automation with Large Language Models. In Proceedings of the 39th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2024, Sacramento, CA, USA, October 27 - November 1, 2024,

[52

[53

[55

(56

[57

[58

[59

(60
(61
(62

(63

(64
(65

(66

(67

(68

(69

= =

flan

=

=

—

=

—

[e

]

—_ = O

—

=

—

LMPL’25, October 2025, Singapore

Vladimir Filkov, Baishakhi Ray, and Minghui Zhou (Eds.). ACM, 1509-
1520. https://doi.org/10.1145/3691620.3695521

Assia Mahboubi and Enrico Tassi. 2022. Mathematical Components.
Zenodo. https://doi.org/10.5281/zenodo.7118596

Conor McBride and Ross Paterson. 2008. Applicative programming
with effects. J. Funct. Program. 18, 1 (2008), 1-13. https://doi.org/10.
1017/50956796807006326

Microsoft Azure Al Foundry Documentation. 2025. Azure Ope-
nAl Reasoning Models. https://learn.microsoft.com/en-us/azure/ai-
foundry/openai/how-to/reasoning. Accessed: 2025-07-02.

Eugenio Moggi. 1991. Notions of Computation and Monads. Inf.
Comput. 93, 1 (1991), 55-92. https://doi.org/10.1016/0890-5401(91)
90052-4

Donald R. Morrison. 1968. PATRICIA - Practical Algorithm To Re-
trieve Information Coded in Alphanumeric. J. ACM 15, 4 (1968),
514-534. https://doi.org/10.1145/321479.321481

Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu Li, Anima Anand-
kumar, and Xujie Si. 2024. Autoformalizing Euclidean Geometry.
In Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net. https:
//openreview.net/forum?id=bylZbZOsGA

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002.
Isabelle/HOL - A Proof Assistant for Higher-Order Logic. Lecture Notes
in Computer Science, Vol. 2283. Springer. https://doi.org/10.1007/3-
540-45949-9

Peter W. O’Hearn. 2007. Separation logic and concurrent resource
management. In Proceedings of the 6th International Symposium on
Memory Management, ISMM 2007, Montreal, Quebec, Canada, October
21-22, 2007, Greg Morrisett and Mooly Sagiv (Eds.). ACM, 1. https:
//doi.org/10.1145/1296907.1296908

Peter W. O’Hearn. 2020. Incorrectness logic. Proc. ACM Program.
Lang. 4, POPL (2020), 10:1-10:32. https://doi.org/10.1145/3371078
Chris Okasaki and Andy Gill. 1998. Fast mergeable integer maps. In
ACM SIGPLAN Workshop on ML. 77-86.

OpenAlL 2024. GPT-4o. https://platform.openai.com/docs/models/gpt-
40. Accessed: 2025-07-08.

OpenAl 2024. GPT-40
https://platform.openai.com/docs/models/gpt-40-mini.
2025-07-08.

OpenAl 2025. o4-mini. https://platform.openai.com/docs/models/o4-
mini. Accessed: 2025-07-08.

OpenAl 2025. tiktoken. https://github.com/openai/tiktoken. Ac-
cessed 2025-07-08.

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino,
Marco Gaboardi, Michael Greenberg, Catalin Hritcu, Vilhelm Sjéberg,
and Brent Yorgey. 2025. Logical Foundations. Electronic textbook.
Version 6.7.1 https://softwarefoundations.cis.upenn.edu/If-6.7.1/.
Jianxing Qin, Alexander Du, Danfeng Zhang, Matthew Lentz, and
Danyang Zhuo. 2025. Can Large Language Models Verify System
Software? A Case Study Using FSCQ as a Benchmark. In Proceedings
of the 2025 Workshop on Hot Topics in Operating Systems, HotOS 2025,
Banff, AB, Canada, May 14-16, 2025. ACM, 34-41. https://doi.org/10.
1145/3713082.3730382

Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng
Wang, Wanjia Zhao, Liyue Zhang, Zhe Fu, Qihao Zhu, Dejian Yang,
Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang, Yuxuan Liu,
Wenjun Gao, Daya Guo, and Chong Ruan. 2025. DeepSeek-Prover-
V2: Advancing Formal Mathematical Reasoning via Reinforcement
Learning for Subgoal Decomposition. — arXiv:2504.21801 [cs.CL]
https://arxiv.org/abs/2504.21801

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable
Data Structures. In 17th IEEE Symposium on Logic in Computer Science
(LICS 2002), 22-25 Fuly 2002, Copenhagen, Denmark, Proceedings. IEEE
Computer Society, 55-74. https://doi.org/10.1109/L1CS.2002.1029817

Mini.
Accessed:

https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1145/3691620.3695357
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://openreview.net/forum?id=FiyS0ecSm0
https://openreview.net/forum?id=FiyS0ecSm0
http://papers.nips.cc/paper_files/paper/2024/hash/6034a661584af6c28fd97a6f23e56c0a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/6034a661584af6c28fd97a6f23e56c0a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/62c6d7893b13a13c659cb815852dd00d-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/62c6d7893b13a13c659cb815852dd00d-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/62c6d7893b13a13c659cb815852dd00d-Abstract-Datasets_and_Benchmarks_Track.html
https://doi.org/10.48550/ARXIV.2406.11915
https://arxiv.org/abs/2406.11915
https://openreview.net/forum?id=yBgTVWccIx
https://doi.org/10.1145/3691620.3695521
https://doi.org/10.5281/zenodo.7118596
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/321479.321481
https://openreview.net/forum?id=bylZbZOsGA
https://openreview.net/forum?id=bylZbZOsGA
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1145/1296907.1296908
https://doi.org/10.1145/1296907.1296908
https://doi.org/10.1145/3371078
https://github.com/openai/tiktoken
https://softwarefoundations.cis.upenn.edu/lf-6.7.1/
https://doi.org/10.1145/3713082.3730382
https://doi.org/10.1145/3713082.3730382
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21801
https://doi.org/10.1109/LICS.2002.1029817

LMPL’25, October 2025, Singapore

[70] Talia Ringer. 2021. Proof Repair. Ph.D. Dissertation. University of

(71

(72

(73

[74

(75

(76

(77

(78

[79

(80

(81

(82

(83

(84

(85

]

]

]

]

]

]

]

]

]

]

]
]

]

_

Washington, USA. https://hdl.handle.net/1773/47429

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary
Tatlock. 2019. QED at Large: A Survey of Engineering of Formally
Verified Software. Found. Trends Program. Lang. 5, 2-3 (2019), 102-281.
https://doi.org/10.1561/2500000045

Alex Sanchez-Stern, Yousef Alhessi, Lawrence K. Saul, and Sorin
Lerner. 2020. Generating correctness proofs with neural networks.
In Proceedings of the 4th ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, MAPL@PLDI 2020,
London, UK, June 15, 2020, Koushik Sen and Mayur Naik (Eds.). ACM,
1-10. https://doi.org/10.1145/3394450.3397466

Alex Sanchez-Stern, Emily First, Timothy Zhou, Zhanna Kaufman,
Yuriy Brun, and Talia Ringer. 2023. Passport: Improving Automated
Formal Verification Using Identifiers. ACM Trans. Program. Lang.
Syst. 45, 2 (2023), 12:1-12:30. https://doi.org/10.1145/3593374

Alex Sanchez-Stern, Abhishek Varghese, Zhanna Kaufman,
Shizhuo Dylan Zhang, Talia Ringer, and Yuriy Brun. 2025. QEDCar-
tographer: Automating Formal Verification Using Reward-Free Rein-
forcement Learning. In 47th IEEE/ACM International Conference on
Software Engineering, ICSE 2025, Ottawa, ON, Canada, April 26 - May
6, 2025. IEEE, 307-320. https://doi.org/10.1109/ICSE55347.2025.00033
Lucas Silver and Steve Zdancewic. 2021. Dijkstra monads forever:
termination-sensitive specifications for interaction trees. Proc. ACM
Program. Lang. 5, POPL (2021), 1-28. https://doi.org/10.1145/3434307
Matthieu Sozeau and Nicolas Oury. 2008. First-Class Type Classes.
In Theorem Proving in Higher Order Logics, Otmane Ait Mohamed,
César Muiioz, and Sofiéne Tahar (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 278-293.

Antal Spector-Zabusky, Joachim Breitner, Yao Li, and Stephanie
Weirich. 2019. Embracing a mechanized formalization gap. CoRR
abs/1910.11724 (2019). arXiv:1910.11724 http://arxiv.org/abs/1910.
11724

Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and
Stephanie Weirich. 2018. Total Haskell is reasonable Coq. In Pro-
ceedings of the 7th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, Janu-
ary 8-9, 2018, June Andronick and Amy P. Felty (Eds.). ACM, 14-27.
https://doi.org/10.1145/3167092

Simon Spies, Lennard Géher, Joseph Tassarotti, Ralf Jung, Robbert
Krebbers, Lars Birkedal, and Derek Dreyer. 2022. Later credits: re-
sourceful reasoning for the later modality. Proc. ACM Program. Lang.
6, ICFP (2022), 283-311. https://doi.org/10.1145/3547631

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub,
Karthikeyan Bhargavan, and Jean Yang. 2013. Secure distributed
programming with value-dependent types. J. Funct. Program. 23, 4
(2013), 402-451. https://doi.org/10.1017/S0956796813000142

The Rocq Development Team. 2025. The Rocq Prover. https://doi.org/
10.5281/zenodo.15149629

Kyle Thompson, Nuno Saavedra, Pedro Carrott, Kevin Fisher, Alex
Sanchez-Stern, Yuriy Brun, Jodo F. Ferreira, Sorin Lerner, and Emily
First. 2025. Rango: Adaptive Retrieval-Augmented Proving for Auto-
mated Software Verification. In 47th IEEE/ACM International Confer-
ence on Software Engineering, ICSE 2025, Ottawa, ON, Canada, April
26 - May 6, 2025. IEEE, 347-359. https://doi.org/10.1109/ICSE55347.
2025.00161

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. 2024.
Solving olympiad geometry without human demonstrations. Nat. 625,
7995 (2024), 476-482. https://doi.org/10.1038/541586-023-06747-5
Philip Wadler. 1992. Comprehending Monads. Math. Struct. Comput.
Sci. 2, 4 (1992), 461-493. https://doi.org/10.1017/50960129500001560
Philip Wadler and Stephen Blott. 1989. How to make ad-hoc polymor-
phism less ad hoc. In Proceedings of the 16th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Austin, Texas,

(86

(87

(88

(89

[90

[91

[92

[93

[94

[95

[96

[97

—

]

=

]

=

]

—

[t

=

=

=

—

Baris Bayazit, Yao Li, and Xujie Si

USA) (POPL ’89). Association for Computing Machinery, New York,
NY, USA, 60-76. https://doi.org/10.1145/75277.75283

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock,
Xi Wang, Michael D. Ernst, and Thomas Anderson. 2015. Verdi:
a framework for implementing and formally verifying distributed
systems. SIGPLAN Not. 50, 6 (June 2015), 357-368. https://doi.org/
10.1145/2813885.2737958

Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock,
Michael D. Ernst, and Thomas E. Anderson. 2016. Planning for
change in a formal verification of the raft consensus protocol. In
Proceedings of the 5th ACM SIGPLAN Conference on Certified Pro-
grams and Proofs, Saint Petersburg, FL, USA, January 20-22, 2016,
Jeremy Avigad and Adam Chlipala (Eds.). ACM, 154-165. https:
//doi.org/10.1145/2854065.2854081

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus N. Rabe,
Charles Staats, Mateja Jamnik, and Christian Szegedy. 2022. Aut-
oformalization with Large Language Models. In Advances in
Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28 - December 9, 2022, Sanmi
Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and
A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/hash/
d0c6bc641a56bebee9dd985b937307367-Abstract-Conference.html
Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory
Malecha, Benjamin C. Pierce, and Steve Zdancewic. 2020. Interaction
trees: representing recursive and impure programs in Coq. Proc. ACM
Program. Lang. 4, POPL (2020), 51:1-51:32. https://doi.org/10.1145/
3371119

Xinference. 2025. deepseek-prover-v2. https://inference.readthedocs.
io/en/latest/models/builtin/llm/deepseek-prover-v2.html Accessed:
2025-07-08.

Xinference. 2025. deepseek-rl. https://inference.readthedocs.io/en/
latest/models/builtin/lim/deepseek-r1.html Accessed: 2025-07-08.
Kaiyu Yang and Jia Deng. 2019. Learning to Prove Theorems via Inter-
acting with Proof Assistants. In Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA (Proceedings of Machine Learning Research,
Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR,
6984-6994. http://proceedings.mlr.press/v97/yang19a.html

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang
Song, Shixing Yu, Saad Godil, Ryan J. Prenger, and Animashree
Anandkumar. 2023. LeanDojo: Theorem Proving with Retrieval-
Augmented Language Models. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, Alice Oh, Tristan Naumann, Amir Globerson, Kate
Saenko, Moritz Hardt, and Sergey Levine (Eds.). http://papers.nips.cc/
paper_files/paper/2023/hash/4441469427094f8873d0fecbOc4e 1cee-
Abstract-Datasets_and_Benchmarks.html

Zhe Ye, Zhengxu Yan, Jingxuan He, Timothe Kasriel, Kaiyu Yang,
and Dawn Song. 2025. VERINA: Benchmarking Verifiable Code
Generation. CoRR abs/2505.23135 (2025). https://doi.org/10.48550/
ARXIV.2505.23135 arXiv:2505.23135

Irene Yoon, Yannick Zakowski, and Steve Zdancewic. 2022. Formal
reasoning about layered monadic interpreters. Proc. ACM Program.
Lang. 6, ICFP (2022), 254-282. https://doi.org/10.1145/3547630
Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim
Zaliva, and Steve Zdancewic. 2021. Modular, compositional, and
executable formal semantics for LLVM IR. Proc. ACM Program. Lang.
5, ICFP (2021), 1-30. https://doi.org/10.1145/3473572

Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-
yao Xia, Lennart Beringer, William Mansky, Benjamin C. Pierce,
and Steve Zdancewic. 2021. Verifying an HTTP Key-Value Server
with Interaction Trees and VST. In 12th International Conference on

https://hdl.handle.net/1773/47429
https://doi.org/10.1561/2500000045
https://doi.org/10.1145/3394450.3397466
https://doi.org/10.1145/3593374
https://doi.org/10.1109/ICSE55347.2025.00033
https://doi.org/10.1145/3434307
https://arxiv.org/abs/1910.11724
http://arxiv.org/abs/1910.11724
http://arxiv.org/abs/1910.11724
https://doi.org/10.1145/3167092
https://doi.org/10.1145/3547631
https://doi.org/10.1017/S0956796813000142
https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.1109/ICSE55347.2025.00161
https://doi.org/10.1109/ICSE55347.2025.00161
https://doi.org/10.1038/S41586-023-06747-5
https://doi.org/10.1017/S0960129500001560
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/2813885.2737958
https://doi.org/10.1145/2813885.2737958
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/2854065.2854081
http://papers.nips.cc/paper_files/paper/2022/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://inference.readthedocs.io/en/latest/models/builtin/llm/deepseek-prover-v2.html
https://inference.readthedocs.io/en/latest/models/builtin/llm/deepseek-prover-v2.html
https://inference.readthedocs.io/en/latest/models/builtin/llm/deepseek-r1.html
https://inference.readthedocs.io/en/latest/models/builtin/llm/deepseek-r1.html
http://proceedings.mlr.press/v97/yang19a.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/ARXIV.2505.23135
https://doi.org/10.48550/ARXIV.2505.23135
https://arxiv.org/abs/2505.23135
https://doi.org/10.1145/3547630
https://doi.org/10.1145/3473572

A Case Study on the Effectiveness of LLMs in Verification with Proof Assistants

(98]

[99]

Interactive Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome,
Italy (Virtual Conference) (LIPIcs, Vol. 193), Liron Cohen and Cezary
Kaliszyk (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
32:1-32:19. https://doi.org/10.4230/LIPICS.ITP.2021.32

Lichen Zhang, Shuai Lu, and Nan Duan. 2024. Selene: Pioneer-
ing Automated Proof in Software Verification. In Proceedings of
the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, Lun-Wei Ku, Andre Martins, and Vivek Sriku-
mar (Eds.). Association for Computational Linguistics, 1776-1789.
https://doi.org/10.18653/V1/2024. ACL-LONG.98

Shizhuo Dylan Zhang, Talia Ringer, and Emily First. 2023. Getting
More out of Large Language Models for Proofs. CoRR abs/2305.04369
(2023). https://doi.org/10.48550/ARXIV.2305.04369 arXiv:2305.04369

[100]

[101]

[102]

LMPL’25, October 2025, Singapore

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng,
Hengyi Cai, Shuaiqiang Wang, Dawei Yin, and Mengnan Du. 2024.
Explainability for Large Language Models: A Survey. ACM Trans.
Intell. Syst. Technol. 15, 2 (2024), 20:1-20:38. https://doi.org/10.1145/
3639372

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. 2022. miniF2F:
a cross-system benchmark for formal Olympiad-level mathematics.
In The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net. https:
//openreview.net/forum?id=9ZPegFuFTFv

Zihan Zhou, Minfeng Zhu, and Wei Chen. 2025. A human-centric per-
spective on interpretability in large language models. Vis. Informatics
9,1(2025), 1. https://doi.org/10.1016/).VISINF.2025.03.001

https://doi.org/10.4230/LIPICS.ITP.2021.32
https://doi.org/10.18653/V1/2024.ACL-LONG.98
https://doi.org/10.48550/ARXIV.2305.04369
https://arxiv.org/abs/2305.04369
https://doi.org/10.1145/3639372
https://doi.org/10.1145/3639372
https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=9ZPegFuFTFv
https://doi.org/10.1016/J.VISINF.2025.03.001

	Abstract
	1 Introduction
	2 Background
	3 Codebase for Evaluation
	3.1 The hs-to-coq Project
	3.2 Verdi

	4 Methodology
	5 Evaluation Results
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

