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Abstract

Large language models (LLMs) can potentially help with ver-
ification using proof assistants by automating proofs. How-
ever, it is unclear how effective LLMs are in this task. In this
paper, we perform a case study based on two mature Rocq
projects: the hs-to-coq tool and Verdi. We evaluate the effec-
tiveness of LLMs in generating proofs by both quantitative
and qualitative analysis. Our study finds that: (1) external
dependencies and context in the same source file can sig-
nificantly help proof generation; (2) LLMs perform great on
small proofs but can also generate large proofs; (3) LLMs
perform differently on different verification projects; and
(4) LLMs can generate concise and smart proofs, apply clas-
sical techniques to new definitions, but can also make odd
mistakes.
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1 Introduction

Software should be correct. But in reality, that’s rarely true.

Proof assistants allow us to formally verify that a class of
bugs is absent in a program via mechanized mathematical
proofs. In the past two decades, various works have demon-
strated that this approach is a feasible way to ensure software
correctness and reliability. Some notable verified software
includes the CompCert C compiler [45], the seL4 microker-
nel [42], the CertiKOS operating system [30], the FSCQ file
system [12], etc. Many new tools and frameworks that sup-
port mechanized reasoning have also emerged, including
program logics and frameworks for reasoning about con-
currency [10, 40, 59, 79], nonterminating programs [75, 89],
nondeterminism [11, 17, 60], etc.
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However, despite all these efforts, proving the correct-
ness theorems of a program in a proof assistant remains a
daunting task. For example, Breitner et al. [9]’s work on ver-
ifying Haskell’s containers library using hs-to-coq shows
that their verification work “required 8.9 lines of proof per
lines of code” [9, Section 3]. This is a significant overhead in
addition to code development. Future changes to the code
or the specification bring even greater challenges for proof
maintenance and proof repair [28, 70, 71].

Large Language Models, or LLMs, on the other hand, have
received great attention for their capability in performing
a wide range of tasks. In particular, existing works have
demonstrated LLMs’ effectiveness in generating code [38]
and mathematical proofs [2, 46, 83].

It is natural to ask: Can LLMs help with verification using
proof assistants?

Indeed, researchers have recently started investigating
this question, and various new tools/frameworks for gen-
erating program correctness proofs with the help of LLMs
have also emerged [25, 44, 51, 67]. However, due to the mys-
terious nature of LLMs [100, 102], many questions remain
unanswered.

In this paper, we build on prior works and try to under-
stand more about the effectiveness of LLMs in verification
with proof assistants, by conducting a case study on two
different verification projects that use Rocq Prover [81]: the
hs-to-coq tool [9, 78] and Verdi [86, 87].

Our case study investigates the following research ques-
tions:

e RQ1: How do external dependencies and/or context
in the same source file impact proof generation for a
theorem?

e RQ2: How do LLMs perform on proofs of different
sizes?

e ROQ3: Is there a difference when running LLMs on
different verification projects?

e RQ4: How is the quality of proofs generated by LLMs?

To answer these questions, we conduct a quantitative
study for RQ1, RQ2, and RQ3, and a qualitative study for
RQ4. Our case study shows:

e Including either external dependencies or context in
the same source file, or both, can significantly improve
the effectiveness of LLMs in generating proofs.
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e LLMs perform significantly better on proofs of smaller
sizes. However, there is still a chance for LLMs to gen-
erate proofs consisting of more than 20 tactics.

e LLMs perform differently in the two projects we stud-
ied. For example, LLMs are less likely to generate

proofs that are identical to original proofs in hs-to-coq.

Context in the same source file also plays a more sig-
nificant role in generating proofs for Verdi.

o LLMs can generate concise and smart proofs. They can
also apply classical techniques such as performing a
case analysis on an inductively defined proposition. On
the other hand, LLMs can also generate odd, apparently
failed proofs that repeat a tactic seemingly indefinitely.

In the rest of this paper, we first introduce some necessary
background about Rocq Prover and program verification
in Section 2. We then discuss our target codebase, namely,
hs-to-coq and Verdi, in Section 3. We describe our method-
ology in Section 4. We share and interpret our results (both
quantitative and qualitative ones) in Section 5. We discuss
related works in Section 6. Finally, we conclude with Sec-
tion 7.

2 Background

In this section, we introduce the necessary background knowl-
edge to understand this paper. Readers who are familiar with
these concepts should feel free to skip the relevant parts.

Rocq Prover. Some commonly used proof assistants in-
clude Rocq Prover [81], Agda [1], Lean [16], Fx [80], and
Isabelle [58], etc. In this paper, we focus on Rocq Prover.
Rocq Prover is formerly known as the Coq proof assistant’
and is one of the most commonly used proof assistants for
program verification. Rocq Prover has an expressive specifi-
cation language and supports full dependent types, which
enables describing the properties of a software system in
rich detail.

We illustrate the process of theorem proving in Rocq
Prover in Fig. 1. We first state a theorem in Rocq Prover
using its specification language. For example, line 1 of Fig. 1a
is equivalent to the mathematical proposition:

YVneN,n+0=n

where N is the set of all natural numbers.

We can then write a proof script that instructs the proof as-
sistant to prove this theorem, as shown in lines 2-7. However,
in Rocq Prover, we typically do not directly write the entire
proof script. Instead, we enter an interactive proof mode.
This step is typically marked by the Proof keyword (line 2).

When we enter the proof mode, Rocq prover will display
the current context and the proof goal as shown in Fig. 1b.
The context, which is empty at this point, consists of all

IThe name change starts in Rocq Prover version 9.0. However, we will
address all versions of Rocq Prover, including those before this name change,
as Rocq Prover to avoid confusion.
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1 Theorem add_0_r : forall n:nat, n + @ = n.
2 Proof.

3 induction n as [ | n' IHn'].

4 - (*n =0 %) reflexivity.

5 - (*n=5Sn" %) simpl. rewrite -> IHn'.
6 reflexivity.

7 Qed.

(a) A Rocq theorem about natural numbers and its proof. The
example comes from Logical Foundations, a classical textbook
on Rocq Prover [66].

forall n : nat, n + @ =n

(b) The context and the proof goal when we enter the proof
mode (i.e., right after invoking line 2).

(c) The context and the proof goal after we invoke the
induction tactic (i.e., after line 3). This is the first goal, i.e., the
base case.

: nat

(d) The context and the proof goal after we proved the base
case (i.e., after line 4). This is the induction step.

: nat

(e) The context and the proof goal after the rewrite tac-
tic (i.e., after line 5).

Figure 1. The process of proving a theorem in Rocq Prover.

the current hypotheses. The proof goal is what we need to
show to finish the proof. We can manipulate the context
and the proof goal using tactics, which are instructions to
Rocq Prover about how to proceed with the proof. In this
case, we decide to do an induction over n, indicated by the
tactic induction n (line 3 in Fig. 1a). Our tactic also names
some new variables via an intro pattern[ | n' IHn' J—these
names will show up later in the proof process.

After invoking the induction tactic, our proof goal will
become two subgoals: one for the base case and one for the
induction step. Rocq Prover will first ask us to prove the base
case. We show the context and the goal of the base case in
Fig. 1c. We can see that the context is still empty, but the goal
has been changed to prove that 0 + 0 = 0. Rocq Prover can
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tell that 0+ 0 computes to 0, so proving the goal is equivalent
to proving that 0 = 0. Rocq Prover knows that = is reflexive,
so we can discharge this goal via the reflexivity tactic.
Once we are done with the base case, Rocq Prover will
ask us to prove the induction step. We show the context
and the goal of the induction step in Fig. 1d. This time, the
context contains a variable n' that has type nat and an in-
duction hypothesis IHn' that statesn' + @ = n'. The names
n' and IHn' come from the intro pattern in our induction
tactic earlier. Our goal has also been changed to show that
Sn' +0 =S n',where S n' means the successor of n'.
InRocg,S n' + @isrecursively definedassS (n' + 0). We
can reveal this via the simpl tactic. After that, we recognize
that n' + @ equals n' by the induction hypothesis IHn', so
we can rewrite using IHn'. The rewrite changes the goal to
Fig. 1e, which can again be solved by the reflexivity tactic.
Finally, we can write a Qed at the end of the proof (line 7
in Fig. 1a). Qed is more than an end mark of a proof in Rocq
Prover: it checks that the proof constructed by our proof
script is indeed a correct proof of the theorem. Rocq Prover
has a small trusted computing base for proof checking. This
means that a proof checked by Qed is highly trustworthy.

Program Verification with Rocq Prover. We can verify
properties of a program in the same way in Rocq Prover. If
the program has already existed but was written in another
language, we need to first embed the syntax and/or semantics
of that program in Rocq Prover [8]. Alternatively, we can also
write a program directly in Rocq, prove properties about it,
and then extract it to another language like OCaml or C. Our
evaluation includes examples in both approaches (Section 3).

There have been various verification works based on Rocq
Prover, including compilers [45, 96], operating systems [30],
file systems [12], networked servers [43, 97], cryptographic
algorithm implementations [22], etc. There are also vari-
ous tools/frameworks supporting program verification with
Rocq Prover, including Verified Software Toolchains [3],
Iris [40, 79], certified abstraction layers [29, 31], mathemat-
ical components [52], and interaction trees [89, 95], etc. A
more detailed account of Rocq Prover’s ecosystem can be
found in Appel [4].

3 Codebase for Evaluation

We chose two open-source Rocq Prover projects as the eval-
uation target: (1) the theory for Haskell’s base library con-
tained in the hs-to-coq project [9, 77, 78], and (2) the Verdi
project for implementing and verifying distributed systems
(86, 87].

We chose these two projects for the following reasons:

First, these two projects represent the two most typical
ways to represent programs: functions and inductively de-
fined relations. Programs in the hs-to-coq codebase are
all purely functional programs, so they are simply defined
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take :: Int > [a] -> [a]
take n _ | n<=0= T[]
take _ [] = []

take n (x:xs) x : take (n-1) xs

(a) The take function defined in Haskell’s base library.
Fixpoint take {a:Type} (n:Z) (xs:list a) :
list a :=
if (n <=? @)%Z then nil
else match xs with

| nil => nil
| cons y ys => cons y (take (n - 1) ys)
end.

(b) The take function converted to Rocq by hs-to-coq.
The Fixpoint keyword marks the definition of a recur-
sive function. Haskell’s types, such as Int and lists [],
are translated to Rocq types Z and list.

Figure 2. The take function defined in Haskell’s base library
and its translation in Rocq Prover produced by hs-to-coq.

as Rocq functions.? The Verdi project, on the other hand,
reasons about traces and transition systems encoded by in-
ductively defined propositions.

Second, these two projects have proper sizes for an ini-
tial investigation of LLMs’ effectiveness in verification. On
the one hand, they are no toy projects. The theory of base
in hs-to-coq contains 187 proofs, and Verdi contains 579
proofs. On the other hand, these projects are not too large.

Finally, none of these projects involve advanced program

logics (e.g., separation logic [69], concurrent separation logic [10,

59]) or frameworks (e.g., certified abstraction layers [29, 31],
interaction trees [89, 95]). The absence of these advanced
reasoning tools helps keep the experiments pristine.

We now talk about each project and the part we evaluate
in more detail.

3.1 The hs-to-coq Project

The hs-to-coq tool translates purely functional programs
in Haskell to a shallow embedding in Rocq Prover. Its open-
source repository contains translated code from Haskell’s
base library, containers library, parts of the GHC compiler,
and many other examples of different sizes. We show an
example of the original Haskell code and the translated Rocq
code in Fig. 2. More details on how such a translation works
can be found in Spector-Zabusky et al. [78].

Our case study is based on the translated Rocq code, and
theorems stated and proven by the hs-to-coq developers.
Once a piece of Haskell code is translated using hs-to-coq,

>They should be called Gallina functions, to be more precise. Gallina is
the specification language of Rocq Prover. However, we will not try to
intentionally distinguish Gallina and Rocq in this paper.
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Class EgLaws (t : Type) “{Eq_ t} :

{ Eq_refl : reflexive _==_;

Eq_sym : symmetric _==_;

Eq_trans : transitive _==_;

Eg_inv : forall xy : t, x ==y =~~~ (x /=y)
}.

Class EgExact (t :
{ Eq_eq :

Type) ~{EqLaws t} :

forall x y : t, reflect (x =y) (x ==y) }.

Figure 3. Laws for the Eq typeclass stated in Rocq Prover in
hs-to-coq.

we can treat the translated code as regular Rocq code, so
our evaluation does not rely on the hs-to-coq tool or any
Haskell code.

Our case study focuses on the theory of the base library.
The base library contains a number of basic Haskell types,
functions, typeclasses, and typeclass instances. The theory of
base contains theorems for these basic types and functions,
and theorems for typeclass laws.

Typeclasses are a way to implement overloading (i.e., ad-
hoc polymorphisms) in functional languages, including both
Haskell and Rocq Prover [34, 76, 85]. A few examples of type-
classes implemented in the base library include: Eq for equal-
ity tests, ord for total orders, Semigroup for concatenation,
Foldable for “congregating” a data structure, and abstract in-
terfaces like Functor, Applicative [53], and Monad [55, 84], etc.

Instances of these typeclasses are expected to satisfy cer-
tain laws. For example, an implementation of equality tests
== in Eq should be reflexive, transitive, and symmetric; the
<= operator in 0rd should be reflexive, transitive, and anti-
symetric; a Monad should satisfy monad laws [55, 84]. The
documentation of the base library describes these laws in
details.

We show an example of how hs-to-coq’s theory of base
states laws for the Eq typeclass in Fig. 3. These laws are
themselves defined as typeclasses in Rocq Prover. Eq_refl,
Eq_sym, and Eq_trans state that == is reflexive, symmetric,
and transitive, respectively. In hs-to-coq, _==_ represents
the equality test function, and == is a notation that can be
used as an infix operator. Eq_inv states that == and /= are
inverse of each other. Finally, EqExact contains a special law
that states == always agrees with Rocq’s builtin equality
=. The reflect definition is an interesting definition that
enables a classical technique in mechanized reasoning called
proof by reflection. We will see an example of LLMs using
this later in Section 5.

We choose the theory of base because it contains a fair
amount of theorems, and the proofs in general are neither
too simple nor too complicated. The longest proof script
involves 43 tactics.
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Other theories, such as theories for containers, graph, or
the GHC compiler, contain much more complicated proofs.
For example, the theorem insertBM_Desc is about the prop-
erty of the insertBM function of container’s IntSet data
structure.® The handcrafted proof of this theorem is 42 lines
of proof script, makes heavy use of proven lemmas, uses
custom tactics, uses Ltac’s match clause for pattern match-
ing certain goals to solve them automatically, involves both
backward reasoning and forward reasoning using assert.
We leave the investigation of these examples to future work.

The hs-to-coq project relies on Rocq Prover 8.10, which
is an old version first released in April 2019. Unfortunately,
most of its code no longer works under later versions of
Rocq Prover because Rocq Prover does not support backward
compatibility. For this reason, we conduct our study on Rocq
Prover 8.10 as well. This should not impact the validity of this
research, as the key workflow and features of Rocq Prover
remain the same across these versions.

3.2 Verdi

Verdi is a framework for implementing and verifying dis-
tributed systems in Rocq Prover. Instead of writing a program
in a different language and embedding it in Rocq Prover, a
programmer first implements their distributed systems in
Rocq Prover and extract the code to OCaml. Unlike purely
functional programs in Haskell’s base library, distributed
systems always contain a number of effects and interact
with a network that can reorder or even drop messages. To
model this, Verdi defines a special monad for implementing
distributed systems and transition systems for network se-
mantics. More details about how Verdi works can be found
in Wilcox et al. [86], Woos et al. [87].

The Verdi framework has been used in various works to
study the effectiveness of Al in verification. For example,
it is included as part of the CoqGym benchmark [92] and
has been studied by First and Brun [23], First et al. [24]. In
particular, Lu et al. [51] tried applying GPT-3.5* to proofs in
Verdi. They found that LLMs like GPT-3.5 are ineffective in
finishing most of the proofs, as they collected 520 errors out
of 579 theorems. They further analyzed all the errors and
made the following observation [51, Section 3]:

...while LLMs often generate proof scripts with
the right high-level structure, they often struggle
with accurately addressing the sorts of low-level
details that hammers excel at. For example, GPT-
3.5 often knows when to use the induction tactic
to decompose theorems into subgoals, but often
fails to generate the right sequence of tactics to
prove each subgoal...

This paper builds on these prior studies, but also investi-
gates the effectiveness of dependencies in prompting.

3The data structure is a Patricia trie [56, 61].
*https://platform.openai.com/docs/models/gpt-3.5-turbo
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The Verdi project we experiment with is the version in-
cluded in CoqGym [92] and relies on Rocq Prover 8.11, to be
consistent with prior studies.

4 Methodology

To evaluate how models performed under different con-
texts, we extracted the following information for each top-
level construct using SerAPI [26] version 8.10.0+0.7.2 for
hs-to-coq, and 8.11.0+0.11.1 for Verdi’®, along with Rocq
version 8.10.2 and 8.11.0, respectively:

Name and signature: For each top-level definition in a Rocq
source file, we extracted its name (i.e., the identifier bound by
the construct) and its signature. For theorems, the signature
consists of the entire declaration excluding the proof. For
other definitions, the signature includes the entire definition.

In-file context: We defined the in-file context as all lines in
the file prior to the location where a theorem appears.

External dependencies, or dependencies: We defined external
dependencies (or dependencies for short) as any signatures
that the original proof relies on, including definitions and
theorems from other source files. If a dependency was already
included in the in-file context, we excluded it from the list of
dependencies to avoid repetition. Our extraction may include
unnecessary dependencies. Specifically, qualified identifiers
returned by SerAPI can match identifiers defined in multiple
files. In such cases, we included all matching possibilities in
the dependency list.

Notations: For each dependency and file imported via
Rocq’s Require Import command, we collected all associated
notation declarations. However, the definitions underlying
these notations were not necessarily included as dependen-
cies, since a notation may be used without its underlying
definition being required by the proof.

Model and parameter selection. Our model selection
includes both general-purpose and reasoning models with a
mix of full-sized and lightweight variants:

1. GPT-40-mini, version 2024-07-18: A smaller general-
purpose model with a context length of
128,000 tokens [63].

2. GPT-4o, version 2024-11-20: A general-purpose model
with a context length of 128,000 tokens [62].

3. OpenAl 04-mini, version 2025-04-16: A smaller reason-
ing model with a context length of 200,000 tokens [64].
The model does not support changing the default tem-
perature through the API, but supports a reasoning
effort parameter [54]. For our experiments, we have
selected reasoning effort ‘medium, which is the de-
fault.

4. DeepSeek Prover V2: An open-source model based on
DeepSeek V3. This model is fine-tuned for theorem

SOur experiments were conducted on Verdi corresponding to commit
fdb4ede19d2150c254f0ebcfbed4fb9547a734b0.

LMPL’25, October 2025, Singapore

proving in Lean 4. The model has a context length
of 163,840 tokens [90] and a parameter count of 671
billion [68]. We include this model in our case study
to check if exposure to mechanized proofs in another
proof assistant transfers to Rocq proofs.

5. DeepSeek R1: A large open-source reasoning model
with a context length of 163,840 tokens [91], and a
parameter count of 671 billion [18].

Each model was prompted with the same system mes-
sage (for models supporting system prompt), and was al-
lowed a maximum of 16,384 output tokens, configured using
max_tokens or max_completion_tokens based on the model.
The original context lengths for each model were preserved.

For all experiments, we set the temperature to 0.1 for mod-
els that support modifying this parameter over the API (e.g.,
GPT-40). For models that do not support a custom tempera-
ture setting (e.g., 04-mini), the default value of 1.0 was used.

Prompt. We used a minimal system prompt that described
(1) the information provided to the model, (2) the proof task it
has to perform, and (3) the expected response format, asking
the model to respond only with the proof body. The prompt
also specified the current version of the Rocq available and
included whether the version used omega in place of 1ia. We
included this detail as the codebases being evaluated were
relatively old, whereas the models, which have more recent
knowledge cutoffs, are likely aware that omega is deprecated.

Variation of dependencies. We varied the prompt pro-
vided to the LLMs across four conditions: (1) full context
(which we will shorten as the informed mode from now on),
(2) without dependencies and notations, (3) without in-file
context, and (4) with both removed.

When omitting the in-file context, we still include the
import statements present in the file to show the model the
available modules. We also extend dependencies to include
the in-file dependent signatures.

Checking successful proofs. We defined a proof as suc-
cessfully generated by the LLM if and only if SerAPI’s sertop
program accepted the proof when provided with (1) all lines
in the file preceding the theorem (i.e., the in-file context), (2)
the theorem’s signature, and (3) the LLM-generated proof
body. This validation was performed using the version of
SerAPI that matches the Rocq Prover version used in the
corresponding codebase.

5 Evaluation Results

We now share our evaluation results and use them to answer
the four research questions we proposed in Section 1.

RQ1: How do external dependencies and/or context
in the same source file impact proof generation for a
theorem? Among the four ablations we introduced in Sec-
tion 4, most models achieved the highest success rate in
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the informed mode, as shown in Tables 1a and 1b. For both
hs-to-coq and Verdi, success rates dropped for most models
when either in-file context or dependencies were excluded,
with the worst results occurring when both were excluded.

One potential consequence of including all dependencies
and in-file context is an increase in input tokens. To un-
derstand this implication, we also estimated the number of
tokens required in both projects. We show the statistics in
Table 2.

RQ2: How do LLMs perform on proofs of different
sizes? Figures 4a and 4b show the proof generation suc-
cess rates in each tactic count interval in light colors. These
figures show that, with the exception of GPT-40-mini, all
LLMs have high success rates in generating proofs of small
sizes. These success rates drop as the proof size increases.
However, even when the proof becomes quite large, LLMs
can still succeed in some cases in both projects.

However, one question we need to address to make sure
our results are valid is to check whether LLMs were generat-
ing these proofs or whether they have simply “memorized”
all these proofs, as both projects are open-source projects
available online. For this reason, we further checked if the
generated proofs are identical to the original proofs. We show
all the generated identical proofs, or “plagiarized” proofs, in
Figs. 4a and 4b using dark colors.

The results show that LLMs indeed generate identical
proofs in both projects. In hs-to-coq, these are all small
proofs, which have a high likelihood of being identical “by
coincidence”. On the other hand, some of the larger generated
proofs in Verdi are identical to the original proofs, suggesting
that the proof might have been in these models’ knowledge
set.

RQ3: Is there a difference when running LLMs on dif-
ferent verification projects? First, the impact of adding
dependencies or in-file context also varies between these
two projects. As seen in Table 3a, the benefits of in-file con-
text diminished in hs-to-coq for proofs involving a larger
number of tactics, and, in some cases, even reduced success
rates for certain models. Conversely, simpler proofs with
fewer tactics appeared to benefit from the in-file context.

In contrast, for Verdi, adding in-file context had a remark-
ably strong effect. As shown in Table 3b, external depen-
dencies alone were mostly insufficient for handling longer
proofs (e.g., 20+ tactics) with a higher number of tactics in
the original proof. The models were only able to perform
better in the informed mode, where the in-file context was
provided.

Another difference between these two projects is that
LLMs did not generate any proofs identical to original proofs
in proofs with a larger tactic count in hs-to-coq.

It is unclear why hs-to-coq and Verdi exhibit these dif-
ferences. However, this finding suggests that studying one
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Figure 4. Success rates (light) vs. identically generated
proofs (dark) by tactic count intervals for hs-to-coq and
Verdi.

project may not be sufficient for improving LLMs’ effective-
ness in other projects.

RQ4: How is the quality of proofs generated by LLMs?
In this section, we highlight some of the interesting proofs—
including both successful ones and failed ones—generated
by LLMs in our case study.

We compare the number of tactics in original proofs and
in proofs generated by LLMs. In both projects, we find that
LLMs can generate shorter proofs than the original ones.

Let’s start with an example in hs-to-coq. We show an
original proof demonstrating that unit is a monoid that sat-
isfies all the Monoid typeclass laws in Fig. 5a. The theorem
statement itself is not important. The original proof works
by first splitting the theorem into four subgoals, each rep-
resenting one monoid property. The proof then unfolds a
number of definitions—a style that is consistent with many
other proofs in the same file. Then, for each subgoal, the
proof proceeds by either a case analysis or an induction.

We show a proof generated by OpenAl 04-mini and
DeepSeek-R1-0528 with no external dependency or same-file
context in Fig. 5b. The proof is much simpler: it first uses
the constructor tactic, which does the same thing as split
in the original here. Then, LLMs “realize” that all subgoals
can be solved using the same sequence of tactics: intros []
to introduce a variable into the context and perform a case
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Table 1. Success counts and rates across different settings for hs-to-coq and Verdi.

(a) hs-to-coq (187 theorems)

Model Informed No in-file context No dependencies  Neither

GPT-40-mini 42 (22.5%) 35 (18.7%) 44 (23.5%) 31 (16.6%)
GPT-40 92 (49.2%) 73 (39.0%) 83 (44.4%) 48 (25.7%)
o4-mini 97 (51.9%) 81 (43.3%) 81 (43.3%) 52 (27.8%)
DeepSeek Prover V2 85 (45.5%) 76 (40.6%) 71 (38.0%) 58 (31.0%)
DeepSeek R1 82 (43.9%) 74 (39.6%) 84 (44.9%) 48 (25.7%)

(b) Verdi (579 theorems)

Model Informed No in-file context No dependencies Neither
GPT-40-mini 55 (9.5%) 27 (4.7%) 57 (9.8%) 17 ( 2.9%)
GPT-40 177 (30.6%) 117 (20.2%) 170 (29.4%) 38 (6.6%)
o4-mini 172 (29.7%) 124 (21.4%) 177 (30.6%) 45 (7.8%)
DeepSeek Prover V2 164 (28.3%) 108 (18.7%) 159 (27.5%) 42 (7.3%)
DeepSeek R1 148 (25.6%) 123 (21.2%) 140 (24.2%) 40 (6.9%)

Table 2. Estimated prompt token counts for each setting,
excluding the system prompt (rounded to the nearest integer).
The token counts were estimated using OpenAI’s TikToken
library [65].

Project Condition Mean Median Max
Informed 3379 3162 10223

hs—to-co No dependencies 1766 1292 6833
9 Noin-file context 1916 1862 5720

Neither 152 147 228

Informed 6944 5488 25357

Verdi No dependencies 5653 4393 19289
No in-file context 2559 1618 20674

Neither 174 167 445

analysis on that variable at the same time, then auto for
automatically discharging each goal.

An even smarter proof generated by LLMs can be found
in Verdi. We show the theorem statement in Fig. 6. The the-
orem describes a relation between two variables, failed and
net, when they are both in a multi-step transition relation
defined by step_ordered_dynamic_failure_star—the exact
definition of this step relation is not important. The orig-
inal proof in Verdi is 24 lines of proof script, involves an
induction, and Ltac’s match statement.

However, OpenAl 04-mini is able to find a proof that con-
sists of only 4 basic tactics on the informed mode, as shown
in Fig. 6. This is because the contrapositive of this proposition
has already been proven as a theorem right before this theo-
rem (called ordered_dynamic_failed_then_initialized). Ope-
nAI o4-mini “recognizes” this connection between the two

Instance instance_MonoidlLaws_unit :
MonoidLaws unit.
Proof.
split;
unfold op_zlzlzgzg _, Semigroup__unit,
op_zlzlzgzg ___,
Base.Semigroup__unit_op_zlzlzgzg _;
unfold mappend, mempty, mconcat,
Monoid__unit, mappend__, mconcat__,
Base.Monoid__unit_mappend,
Base.Monoid__unit_mempty,
Base.Monoid__unit_mconcat.
- intro x. destruct x. auto.
- intro x. destruct x. auto.
- intros. auto.
- intros x. induction x; simpl. auto. auto.
Qed.

(a) The original proof showing that unit is a monoid that satis-
fies all the Monoid typeclass laws.

Proof.
constructor; intros []; auto.
Qed.

(b) A proof for the same theorem generated by OpenAl 04-mini
and DeepSeek-R1-0528. The two models generate the same
proof for this theorem.

Figure 5. A comparison between the original
proof and a proof generated by LLMs for theorem
instance_MonoidLaws_unit in hs-to-coq.

theorems and proves this theorem by simply applying its
contrapositive.
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Table 3. Percent gain in success rates from no in-file context (dependencies only) to informed per model and interval (with

interval share in %).

(a) hs-to-coq

Model 0-4 (56%) 5-9(21%) 10-14 (12%) 15-19 (7%) 20+ (5%)

GPT-40 16.4 0.0 9.1 -7.7 11.1

GPT-40-mini 8.7 -2.5 0.0 -7.7 0.0

04-mini 14.4 10.3 -13.7 7.7 -11.1

DeepSeek Prover V2 0.0 18.0 9.1 0.0 0.0

DeepSeek R1 4.8 10.3 0.0 -15.4 11.1

(b) Verdi

Model 0-4 (23%) 5-9(33%) 10-14 (11%) 15-19 (7%) 20-24 (7%) 25+ (19%)
GPT-40-mini 7.6 4.1 3.1 0.0 9.8 3.7
GPT-40 9.9 114 7.8 11.9 22.0 5.5
04-mini 10.6 6.8 12.5 11.9 12.2 2.8
DeepSeek Prover V2 3.8 15.1 12.5 9.5 14.6 3.7
DeepSeek R1 4.6 4.7 3.1 7.1 4.9 2.8

Lemma ordered_dynamic_state_not_initialized_not_failed :
forall net failed tr,
step_ordered_dynamic_failure_star
step_ordered_dynamic_failure_init
(failed, net) tr ->
forall n, ~ In n (odnwNodes net) ->
~ In n failed.

(* The following proof is generated by OpenAI o4-mini. *)

Proof.

intros net failed tr Hstar n Hnot Hin.

apply Hnot.

eapply ordered_dynamic_failed_then_initialized; eauto.
Qed.

Figure 6. A Rocq theorem found in Verdi (in the
file core/DynamicNetLemmas.v) and a proof generated by
OpenAl 04-mini. We omit the original proof found in Verdi
because the proof script is 29 tactics long.

We should point out that the two theorems shown in
Figs. 5 and 6 can also be solved using classical tools like
CoqHammer [14, 15]. CoqHammer can solve the hs-to-coq
theorem (Fig. 5) with its own tactic called sfirstorder. For
the Verdi theorem (Fig. 6), it performs a proof search using
an external automated theorem prover and also finds that the
theorem can be proven with the help of its contrapositive,
similar to the proof generated by LLMs. Nevertheless, it is
impressive that LLMs are able to find these simple proofs
given only one shot without a feedback loop.

The next theorem that LLMs come up with a simpler proof
is the most surprising to us, and the theorem cannot be solved
by CoqHammer. We show the theorem and its original proof

in Fig. 7a. The theorem states that the pair a * b staisfy
the EqExact law (Fig. 3) if both a and b satisfies this law.
We show the original proof script in Fig. 7a to demonstrate
the complexity of the original proof and to compare it with
a proof generated by LLMs, but the reader should not try
to read the proof script without Rocq Prover’s interactive
environment. The key structure of the proof is to perform
two case analyses indicated by the two uses of the destruct
tactic: (1) if two variables of type a are equal by ==, and (2) if
two variables of type b are equal by ==.

We show a proof generated by DeepSeek-R1-0528 with
the same-file context but without external dependencies in
Fig. 7b. The proof is more concise. A main reason is that, in-
stead of doing a case analysis on == like in the original proof,
this proof pesforms a case analysis on Eq_eq, whose type
is an inductively defined proposition reflect (Fig. 3) that
relates == and =. Intuitively, performing a case analysis on
reflect gives us more information than just ==. For example,
the original proof uses move /Eq_eq to convert between ==
and = in various places, but such a step is unnecessary in the
generated proof.

Performing a case analyses on an inductively defined
proposition like reflect to “extract more information” is
a classical technique in mechanized verification discussed
in Rocq Prover textbooks [66, Chapter “Inductively Defined
Propositions”]. However, Eq_eq is a function defined in
hs-to-cog—to be more precise, in the same file as
EqExact_pair—and a case analysis on Eq_eq was used only
once in the same file before this theorem, but DeepSeek-R1-
0528 is still able to generate a proof like this in one shot
without a feedback loop.
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Instance EqExact_pair {a b}
“{EqExact a} “{EqExact b} : EgExact (a * b).
Proof.
split; rewrite /op_zeze__ /op_zsze__
/Eq_pair___ /op_zeze
case =>[??] [??] //=. destruct (_ == _) eqgn:?.
- rewrite andb_true_l. move /Eq_eq in Heqgb@.

/op_zsze .

destruct (_ == _) eqgn:?.

+ constructor. move /Eq_eq in Hegbl.
subst. reflexivity.

+ constructor. move /Eq_eq in Hegbl.
intro. apply Hegbl.
inversion H5; reflexivity.

- rewrite andb_false_1. constructor.
move /Eq_eq in Hegb®. intro.
inversion H5. apply Hegb®. assumption.
Qed.

(a) The original proof showing that the pair a * b satisfies the
EqExact law (Fig. 3) whenever both a and b do.

Proof.
split; unfold op_zeze__, op_zsze__,
Eq_pair___, op_zeze____, op_zsze____

=> - [x1 y1] [x2 y2] /=.

- case: (Eg_eq x1 x2) => [-> | NEQx];
case: (Egq_eq y1 y2) => [-> | NEQyI;
constructor; congruence.

Qed.

(b) A proof for the same theorem generated by DeepSeek-R1-
0528.

Figure 7. A comparison between the original
proof and a proof generated by LLMs for theorem
instance_MonoidLaws_unit in hs-to-coq.

On the negative side, we find that LLMs can stutter in
generating some proofs. We show a theorem in hs-to-coq
and its original proof in Fig. 8a. The proof is simple and
straightforward. However, GPT 40-mini generates a failed
proof in the informed mode shown in Fig. 8b. The proof
fails at the first unfold. However, an odder phenomenon is
that, after the first rewrite /op_zeze__, the proof just keeps
repeating the same tactic, seemingly indefinitely.

This phenomenon is not common, but it has appeared in
both hs-to-coq and Verdi, in different theorems, various
LLMs, when invoking various tactics. However, we cannot
deduce or conjecture what the reasons are for this to happen.

Limitations. In terms of design, our experimental setup
focused exclusively on single-pass proof generation, without
incorporating a feedback loop. Although we recorded errors
produced by sertop for each LLM and setting for future
work, we did not analyze the model’s ability to respond to
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Lemma simpl_list_cons_eq a “{Eq_ a} (x y :a) xs ys :
(cons x xs) == (cons y ys) = (x == y) && (xs == ys).
Proof.
unfold op_zeze
simpl. auto.
Qed.

op_zeze Eq_list.

— —_—

(a) The theorem simpl_list_cons_eq theorem in hs-to-coq
and its original proof.

(* The following proof is generated by GPT 4o-mini. *)
Proof.
unfold Eq___list, op_zeze
rewrite /eqlist.

op_zeze eglist.

— ———

destruct xs, ys; simpl.
- rewrite /op_zeze__.
rewrite /op_zeze__.
rewrite /op_zeze__.
(* The proof goes on by repeating [rewrite]s. *)

(b) A failed proof generated by GPT 40-mini that repeats the
same tactic.

Figure 8. A comparison between the original proof
and a failed proof generated by LLMs for theorem
simpl_list_cons_eq in hs-to-coq.

errors. Moreover, when analyzing dependencies, we limited
our scope to files within the same Rocq project. While the
models were given the import statements in each setting,
the external libraries were not indexed. Consequently, we
assumed that LLMs would have implicit knowledge of widely
used libraries such as ssreflect, or StructTact, InfSeqExt, and
Cheerios (for Verdi), but did not verify this directly.

A further limitation lies in our dataset, which, while con-
taining a substantial number of theorems, covers only two
Rocq projects. Rocq projects may naturally vary in their
structure and organization, which may heavily impact the
results for settings with one of the dependencies or in-file
contexts.

Finally, our experiments were conducted using Rocq ver-
sion 8.10.2 and 8.11.0, which are both relatively old. While
this choice was necessary to ensure compatibility with the
codebases we studied, it may impact the relevance of results
for newer versions of Rocq if the LLMs we used were trained
on more recent versions of the language.

6 Related Work

Benchmarks for proofs. CoqGym is a pioneer in provid-
ing an extensive Rocq benchmark for machine learning mod-
els [92], containing 71K proofs from 123 real-life projects. It
has been used by various studies on proof automation, such
as First and Brun [23], First et al. [24], Lu et al. [51]. These
works are also an inspiration for the case studies presented
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in this paper. However, one issue with CoqGym is that it
relies on older versions of Rocq Prover. For this reason, more
recent tools like the CogPilot benchmarking framework
choose to build their own datasets [44].

Outside Rocq Prover, there are many benchmarks for other
proof assistants or formal-method tools, such as
DafnyBench [50], LeanDojo [93], miniCodeProps [49],
FVAPPS [20], VerifyThisBench [19], Verina [94], etc.

Proof automation. Proof automation has always been
a goal in research on proof assistants. Most of these works
rely on automated theorem provers (ATPs) like SAT/SMT
solvers. For example, SMTCoq [5] uses SAT/SMT solvers
to prove theorems and then reconstructs Rocq proofs from
them. CogHammer [14, 15] defines a set of automation tac-
tics for dependent type theory, uses external ATPs to find a
proof, and then constructs a proof using its automation tac-
tics by taking hints from proofs found by ATPs. In this way,
CoqHammer is able to construct Rocq proofs that use intu-
itionistic logic with the help of ATPs that work on classical
logic.

Other proof automation tools like Tactician [7] use ma-
chine learning (but not LLMs) instead. It provides sugges-
tions for the next tactic based on “previously written tactics”.
CoqGym, the benchmark for Rocq proofs, also includes a
tool called ASTactic, which is trained on CoqGym and uses
deep learning to generate proofs automatically [92]. Some
more recent works in this area include Proverbot9001 [72],
Passport [73], QEDCartographer [74], etc.

LLMs and proof assistants. There have been a few re-
cent works that investigate the capabilities of LLMs in gener-
ating proofs for proof assistants. We have already discussed
Lu et al. [51]’s study on Verdi in Section 3.2. Qin et al. [67]
studied FSCQ, a verified file system [12]. They conjectured
that one reason LLMs fail to generate proofs is that LLMs
struggle to find relevant lemmas when too many lemmas are
given in a prompt [67, Section 4.3].

There have also been many works that leverage the power
of LLMs to build proof-automation tools. For example, Bal-
dur uses fine-tuned LLMs to generate whole proofs for Is-
abelle/HOL [25]. Their evaluation of Baldur on the PISA
dataset [36] further shows that LLMs outperform small-
model-driven search-based methods. PALM builds on its
observation on Verdi (Section 3.2) and uses a generate-then-
repair approach that combines LLMs and symbolic methods
(e.g., CoqHammer [14, 15]) to generate Rocq proofs [51].
Draft, Sketch, and Prove (DSP) uses LLMs to generate a
sketch of a formal proof and then uses ATPs to fill in the
missing details in the sketch [37]. Some other works in this
area include Hu et al. [32], Kasibatla et al. [41], Lin et al.
[48], Thompson et al. [82], Zhang et al. [98], etc.

Premise selection for proof generation. Premise selec-
tion refers to the process of selecting relevant premises, such
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as definitions and lemmas [35]. This is a common process
used by many proof-generation works. For example, PALM
uses Term Frequency-Inverse Document Frequency (TF-IDF)
[39] and k nearest neighbors (KNN) [21] to select relevant
premises. CogPilot selects premises based on “metrics such
as distance from the generation target or similarity with
other theorem statements” [44].

Our work takes a much simpler approach by directly in-
cluding dependencies and in-file context in the prompt. Prior
works like Baldur did a similar thing, but they only included
in-file context [25, Section 2.3].

LLMs and math. LLMs have been studied extensively
in the context of mathematics. Earlier research focuses on
benchmarking LLMs with simple math reasoning tasks [6,
13, 101]. Recently, Olympiad-level math theorem proving has
been successfully tackled by LLMs [2, 46, 83]. There has also
been rapid progress in auto-formalizing mathematics [47, 57,
88].

7 Conclusion

In this paper, we conduct a case study based on two real-
world Rocq projects: the hs-to-coq project and Verdi. Our
case study shows that LLMs can be effective in generating
whole proofs for program correctness theorems. More specif-
ically, we show that external dependencies and in-file context
can significantly help with proof generation. We also find
that LLMs perform well on small proofs. While its effective-
ness degrades when the proof size increases, there is still
a decent chance for it to generate whole proofs. However,
our study also shows that the effectiveness characteristics of
LLMs differ in different verification projects, which suggests
that studying one project may not be sufficient for improv-
ing LLMs’ effectiveness in other projects. Finally, we find
that LLMs can generate concise and smart proof scripts, can
apply classical techniques to new definitions, but can also
produce meaningless stuttering proofs for unknown reasons.

We believe that using LLMs for verification with proof
assistants is a promising direction that deserves more at-
tention. Program verification is suitable for tools like LLMs
that are unpredictable and can hallucinate [33, 99]. First,
proofs are not computational. A generated inefficient proof
has little to no impact compared with a generated inefficient
program. Second, the proof-checking mechanisms in proof
assistants (e.g., Qed of Rocq Prover) can safeguard generated
proofs to make sure that they are correct.

Verification with proof assistants can be potentially much
more useful in software engineering if proof automation can
be significantly improved. Indeed, researchers have argued
that one major reason that formal methods are rarely used
in software development today is their social aspect [27]. It
will greatly improve the usability of formal methods (and
hence the reliability of software) if LLMs can help with proof
automation.
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